Introduction to Approximation theory 2023: Assignment I

- 1. [Schwartz class] Prove that if $\varphi \in S$ then,
 - (i) $x^{\alpha} \varphi(x) \in S, \forall \alpha \in \mathbb{Z}_{+}^{n}$.
 - (ii) $\partial^{\alpha} \varphi \in L_p(\mathbb{R}^n)$, for any $0 , <math>\alpha \in \mathbb{Z}_+^n$.
 - (iii) $\hat{\varphi} \in \mathcal{S}$ (Hint: you may prove the case n = 1. Use integration by parts of $\int_{-\infty}^{\infty} \varphi(x) e^{-iwx} dx$).
- 2. [Distributional derivative] Prove using the definition of the distributional derivative that

$$H'(x) = \begin{cases} 1, & -1 \le x < 0, \\ -1, & 0 \le x \le 1, \\ 0, & \text{else,} \end{cases} \text{ where } H(x) \coloneqq \begin{cases} x+1, & -1 \le x < 0, \\ 1-x, & 0 \le x \le 1, \\ 0, & \text{else.} \end{cases}$$

- 3. Let $f, g \in L_2(\mathbb{T})$. Prove that
 - (i) $f * g \in L_2(\mathbb{T}).$
 - (ii) For each $k \in \mathbb{Z}$, $(f * g)^{\wedge}(k) = \hat{f}(k)\hat{g}(k)$.
- 4. Let $f(x) \coloneqq \sum_{m=1}^{M} c_m \mathbf{1}_{[2m,2m+1]}(x)$. Compute the modulus $\omega_1(f,t)_p$, for all 0 < t < 1/2, and 0 .
- 5. Prove the following equality for any $N \ge 1$, $x, h \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$,

$$\Delta_{Nh}^{r}(f,x) = \sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \Delta_{h}^{r}(f,x+k_{1}h+\ldots+k_{r}h).$$

Hint: recall we proved in class for r = 1. Now apply induction on r. Make sure the notations are correct.