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Abstract In this work, we consider the problem of recovering an ensemble of Diracs
on the sphere from its projection onto spaces of spherical harmonics. We show that
under an appropriate separation condition on the unknown locations of the Diracs, the
ensemble can be recovered through total variation norm minimization. The proof of
the uniqueness of the solution uses the method of ‘dual’ interpolating polynomials and
is based on Candès and Fernandez-Granda (Commun Pure Appl Math 67:906–956,
2014), where the theory was developed for trigonometric polynomials. We also show
that in the special case of nonnegative ensembles, a sparsity condition is sufficient for
exact recovery.
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1 Introduction

In many cases, images and signals are observed on spherical manifolds. Typical exam-
ples are astrophysics (e.g., [14]), topography [4] and gravity fields sensing [13]. Fur-
ther examples are spherical microphone arrays, used for spatial beam forming [19]
and sound recording [20].
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A key tool for the analysis of signals on the sphere is spherical harmonics analysis,
discussed in detail later on. For instance, the spherical microphone array was ana-
lyzed in terms of spherical harmonics in [23]. Additionally, spherical harmonics have
been extensively used for various applications in computer graphics, such as model-
ing of volumetric scattering effects, bidirectional reflectance distribution functions,
and atmospheric scattering (for more graphical applications, see [25] and the refer-
ences therein). Spherical harmonics are also used in medical imaging [26], optical
tomography [3], several applications in physics such as solving potential problems in
electrostatics [16] and the central potential Schrödinger equation in quantummechan-
ics [9]. Additional applications of spherical harmonics are sampling on the sphere
[5,17] and, more recently, compressed sensing [1] and sparse recovery [18,22]. In
some sense, our work relates to these latter fields.

Let Hn(S
d−1) denote the space of homogeneous spherical harmonics of degree n,

which is the restriction to the unit sphere of the homogeneous harmonic polynomials
of degree n in Rd [2]. Each subspace Hn(S

d−1) is of dimension

an,d := (2n + d − 2)(n + d − 3)!
n!(d − 2)! , n ∈ N, d ≥ 2.

Also, recall that L2(S
d−1) = ⊕∞

n=0Hn(S
d−1). Thus, if {Yn, j }, j = 1, . . . , an,d , is

an orthonormal basis of Hn(S
d−1), then f ∈ L2(S

d−1) can be expanded as f =∑∞
n=0 fn ,where

fn =
an,d∑

j=1

〈 f,Yn, j 〉Yn, j .

Using the addition formula [2], one can write the kernel of the projection onto
Hn(S

d−1) as

Pn,d(ζ · η) =
an,d∑

j=1

Yn, j (ζ )Yn, j (η) = an,d

|Sd−1| Pn,d(ζ · η), ζ, η ∈ S
d−1, (1.1)

where Pn,d is univariate ultraspherical Gegenbauer polynomial of order d and degree
n. Thus, the projection kernel onto the space VN := ⊕N

n=0 Hn(S
d−1) is given by

KN (ζ · η) :=
N∑

n=0

Pn,d(ζ · η). (1.2)

In this work, we consider the Dirac ensemble

f =
∑

m

cmδξm , (1.3)
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where δx is a Dirac measure, cm ∈ R are real weights, and ξm ∈ � ⊂ S
d−1 are distinct

locations on the sphere. We recall the following definition:

Definition 1.1 Let B(A) be the Borel σ -Algebra on a compact space A, and denote
by M(A) the associated space of real Borel measures. The total variation of a real
Borel measure v ∈ M(A) over a set B ∈ B(A) is defined by

|v|(B) = sup
∑

k

|v(Bk)|,

where the supremum is taken over all partitions of B into a finite number of disjoint
measurable subsets. The total variation |v| is a nonnegative measure on B(A), and the
total variation (TV) norm of v is defined as

‖v‖T V = |v|(A).

For a measure of the form of (1.3), it is easy to see that

‖ f ‖T V =
∑

m

|cm |. (1.4)

In this paper, we assume that the only information we have on the signal f is its
‘orthogonal projection’ onto VN , i.e,

yn, j := 〈 f,Yn, j 〉 =
∑

m

cmYn, j (ξm), 0 ≤ n ≤ N , 1 ≤ j ≤ an,d . (1.5)

To ensure exact recovery of theDirac ensemble from its projection onto VN , we impose
a separation condition as in [8] for the case of trigonometric polynomials and as in [6]
for the case of algebraic polynomials over [−1, 1]. To this end, recall that the distance
on the sphere between any two points ξ1, ξ2 ∈ S

d−1 is given by

d(ξ1, ξ2) = arccos (ξ1 · ξ2) . (1.6)

Definition 1.2 A set of points � ⊂ S
d−1 is said to satisfy the minimal separation

condition for (sufficiently large) N if

� := min
ξi ,ξ j∈�,ξi �=ξ j

d
(
ξi , ξ j

) ≥ ν

N
, (1.7)

where ν is a fixed constant that does not depend on N .

The main theorem of this paper concerns exact recovery in the case d = 3, i.e., the
sphere S2.

Theorem 1.3 Let � = {ξm} be the support of a signed measure of the form (1.3). Let
{Yn, j }Nn=0 be any spherical harmonics basis for VN (S2), and let yn, j = 〈 f,Yn, j 〉, 0 ≤
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n ≤ N , 1 ≤ j ≤ an,3. If � satisfies the separation condition of Definition 1.2, then f
is the unique solution of

min
g∈M(S2)

‖g‖T V subject to 〈g,Yn, j 〉 = yn, j ,

n = 0, . . . , N , j = 1, . . . , an,3, (1.8)

where M(S2) is the space of signed Borel measures on S2.

Observe that for applications, Theorem 1.3 is stronger than needed. Indeed, since
the form of (the unknown) f is known, one may perform TV minimization over
the smaller subspace of Dirac superpositions over the sphere. Practical numerical
algorithms that leverage this result are presented in [7]. Also, we strongly believe that
this result holds in higher dimensions and indeed significant parts of the proof can be
easily generalized to any dimension. However, there are certain technical challenges
(see Sect. 4.2), which we hope to overcome in future work.

The outline of the paper is as follows. In Sect. 2, we recall the dual problem of
interpolating polynomials. In Sect. 3, we provide details on the essential ingredient
of the dual polynomial construction, which is a well-localized polynomial kernel.
In Sect. 4, we carry out the actual construction of the interpolating polynomial. In
Sect. 5, we review the simpler case of signals with nonnegative coefficients, where the
separation condition can be replaced by a significantly weaker assumption of sparsity,
i.e., that the number of Diracs is ≤ N .

Finally, we point out that the main result of the paper is of qualitative nature in the
following sense. Throughout the proofs, we will have for some k ≥ 3 elements of the
type ck/νk−1, where ck are absolute constants that depend only on k but change from
estimate to estimate and ν is the constant from Definition 1.2. Once all estimates are
done, ν is selected to be sufficiently large so that ck/νk−1 and similar quantities are
sufficiently small. In this paper, we do not deal with the problem of the sharpness of
the constant ν.

2 The Dual Problem of Polynomial Interpolation

The proof of Theorem 1.3 can be reduced to a problem in polynomial interpolation.
This result in its general form is given in [6] (see also [8,11]). For completeness, we
provide here the proof for the case of real coefficients.

Theorem 2.1 Let f = ∑
m cmδξm , cm ∈ R, where�:={ξm} ⊆ A, and A is a compact

manifold in R
n. Let 
D be a linear space of continuous functions of dimension D in

A. For any basis {Pk}Dk=1 of 
D, let yk = 〈 f, Pk〉 for all 1 ≤ k ≤ D. If for any set
{um}, um ∈ R, with |um | = 1, there exists q ∈ 
D such that

q(ξm) = um ∀ξm ∈ �,

|q(ξ)| < 1 , ∀ξ ∈ A\�,
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then f is the unique real Borel measure satisfying

min
g∈M(A)

‖g‖T V subject to yk = 〈g, Pk〉, 1 ≤ k ≤ D. (2.1)

Proof Let g be a solution of (2.1), and define g = f + h. The difference measure h
can be decomposed relative to | f | as

h = h� + h�C ,

where h� is concentrated in �, and h�C is concentrated in �C (the complementary
of �). Note that if h� = 0, than h�C = 0 also, otherwise ‖g‖T V > ‖ f ‖T V , which is
a contradiction. Thus, in such as case, h = 0 and f is the unique minimizer of (2.1).
Performing a polar decomposition of h� yields

h� = |h�|sgn(h�)(ξ),

where sgn(h�) is a function on Awith values {−1, 1} (see, e.g., [24]). By assumption,
there exists q ∈ 
D obeying

q(ξm) = sgn(h�)(ξm), ∀ξm ∈ �, (2.2)

|q(ξ)| < 1, ∀ξ ∈ A\�. (2.3)

Also, by assumption, 〈g, Pk〉 = 〈 f, Pk〉 for 1 ≤ k ≤ D, and so

〈q, h〉 = 0. (2.4)

Equation (2.4), with the polar decomposition of h�, and (2.2), imply

0 = 〈q, h�〉 + 〈q, h�C 〉 = ‖h�‖T V + 〈q, h�C 〉.
If h�C = 0, then ‖h�‖T V = 0, and h = 0. Alternatively, if h�C �= 0, we conclude by
property (2.3) that

|〈q, h�C 〉| < ‖h�C ‖T V .

Thus,
‖h�C ‖T V > ‖h�‖T V . (2.5)

As a result of (2.5), we get

‖ f ‖T V ≥ ‖ f + h‖T V = ‖ f + h�‖T V + ‖h�C ‖T V
≥ ‖ f ‖T V − ‖h�‖T V + ‖h�C ‖T V > ‖ f ‖T V ,

which is a contradiction. Therefore, h = 0, which implies that f is the unique solution
of (2.1). ��

In Fig. 1, we see an example of an interpolating spherical harmonic polynomial
q : S2 → [0, 1], where N = 50. The heat map shows dark red at points ξm ∈ �,
where q(ξ) = 1, and blue in regions where q is close to zero.
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Fig. 1 An interpolating
polynomial on the sphere
(Color figure online)

3 Spherical Harmonics Localization

It is well known that the orthogonal projection kernel KN given by (1.2) does not have
good localization. Instead, we follow [21] and for d = 3 define the kernel

F̃N (ζ · η) :=
∞∑

n=0

ρ(n/N )Pn,3(ζ · η), (3.1)

where ρ ∈ C∞[0,∞) is a smooth nonnegative univariate function satisfying

ρ(t) =

⎧
⎪⎨

⎪⎩

1, t ∈ [0, 1/2],
≤ 1, t ∈ [1/2, 1],
0, otherwise.

(3.2)

We emphasize that F̃N (·) can be regarded as a superposition of Gegenbauer polyno-
mials of degree ≤ N and hence also a univariate algebraic polynomial of degree N .
Let us impose the following normalization:

FN (ζ · η) := C̃(N )F̃N (ζ · η),

with C̃(N ) > 0, chosen such that

FN (1) = 1, (3.3)

and
F ′
N (1) ≥ c̃N 2, (3.4)
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where c̃ > 0 is a constant independent of N . Indeed, c̃ can be bounded from below by
1/64 as follows. Since

FN (t) = C̃ (N )
∑N

n=0
ρ
( n

N

) 2n + 1

4π
Pn,3 (t)

and Pn,3(1) = 1,∀n ≥ 0, the normalization FN (1) = 1 gives

C̃ (N ) = 1
∑N

n=0 ρ
( n
N

) 2n+1
4π

.

The derivative formula (see, e.g., [2])

P ′
n,d(t) = n(n + d − 2)

d − 1
Pn−1,d+2(t), n ≥ 1, d ≥ 2,

implies

F ′
N (t) = C̃ (N )

∑N

n=1
ρ
( n

N

) 2n + 1

4π

n (n + 1)

2
Pn−1,5 (t).

Hence, by the properties of ρ [see (3.2)],

F ′
N (1) =

∑N
n=1 ρ

( n
N

) 2n+1
4π

n(n+1)
2

∑N
n=0 ρ

( n
N

) 2n+1
4π

≥
∑N/2

n=1 n (n + 1) (2n + 1)

2
∑N

n=0 (2n + 1)

=
1
2
N
2

( N
2 + 1

) ( 1
4N

2 + 3
2N + 2

)

2N 2 + 4N + 2
≥ N 2

64
.

Our construction requires the right form of differentiation. To this end, we employ
the Lie algebra structure on the sphere (see Section 4.2.2 in [2] for more details). For
any ξ0 ∈ S

2, let Dξ0,1, Dξ0,2, be the two Lie algebra matrices associated with the
directions of the vectors spanning the tangent plane at ξ0 ∈ S

2. The two tangents,
and hence, the matrices, can be determined uniquely (and continuously) to form a
right-hand system with ξ0. These matrices generate parametric families of rotation at
angles t in the corresponding directions by the rotation matrices

Dξ0,1 (t) := e−t Dξ0,1 , Dξ0,2 (t) := e−t Dξ0,2 ,

where for any matrix B, eB :=∑∞
0

Bk

k! . We may define the rotational derivatives (if
they exist) of a function F : S2 → R, at a point ξ ∈ S

2, by

Dξ0,r F(ξ) := lim
t→0

F
(
Dξ0,r (t) ξ

)− F (ξ)

t
, r = 1, 2.
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Thus, for any point ξ1 ∈ S
2, we define the rotational derivatives associated with ξ0, of

the function FN (ξ · ξ1), localized at ξ1, by

Dξ0,1FN (ξ, ξ1) := lim
t→0

FN
(
Dξ0,1 (t) ξ · ξ1

)− FN (ξ · ξ1)

t
,

Dξ0,2FN (ξ, ξ1) := lim
t→0

FN
(
Dξ0,2 (t) ξ · ξ1

)− FN (ξ · ξ1)

t
.

Briefly denoting by P the orthogonal projector onto VN , we know by Lemma 4.7 of
[2] that for any polynomial Q ∈ VN ,

Dξ0,r Q = Dξ0,rPQ = PDξ0,r Q, r = 1, 2,

which implies that Dξ0,r FN (ξ · ξ1) ∈ VN , r = 1, 2, i.e., are spherical harmonics. This
is crucial for the construction of the interpolating polynomial (4.3).

First, we investigate the properties of the spherical harmonic G(ξ, ξ0):=ξ · ξ0 for
a fixed ξ0 ∈ S

d−1.

Lemma 3.1 For any ξ0, η, η1, η2 ∈ S
d−1,

|G(η1, ξ0) − G(η2, ξ0)| ≤ d (η1, η2)

[

d (η, ξ0) + max
j=1,2

d(η, η j )

]

.

Proof Define d1:=d (η1, ξ0) , d2:=d (η2, ξ0). Then

|η1 · ξ0 − η2 · ξ0| = |cos d1 − cos d2| = 2 |sin ((d1 − d2)2)| |sin ((d1 + d2)/2)|
≤ 1/2 |d1 − d2| |d1 + d2| .

Hence,

|η1 · ξ0 − η2 · ξ0| ≤ d (η1, η2)max {d (η1, ξ0) , d (η2, ξ0)}
≤ d (η1, η2)

(

d (η, ξ0) + max
j=1,2

d(η, η j )

)

.

��
Let ξ0, ξ1, η ∈ S

2, r = 1, 2 and 0 < t ≤ π . If Dξ1,r (t)η = η, then obviously
Dξ1,rG(η, ξ0) = 0. Otherwise, observe that for any rotation matrix A, at an angle t ,
applied to η, we have d(Aη, η) ≤ t . Applying this observation and Lemma 3.1 gives

|Dξ1,rG(η, ξ0)| = lim
t→0

∣
∣Dξ1,r (t) η · ξ0 − η · ξ0

∣
∣

t

≤ lim
t→0

d
(
Dξ1,r (t) η, η

) (
d (η, ξ0) + d

(
Dξ1,r (t) η, η

))

d
(
Dξ1,r (t) η, η

)

≤ d (η, ξ0) . (3.5)

123



Constr Approx (2015) 42:183–207 191

Next, we have the Lipschitz-type estimate

∣
∣Dξ1,rG (η1, ξ0) − Dξ1,rG (η2, ξ0)

∣
∣ = lim

t→0

∣
∣
(
Dξ1,r (t) − I

)
(η1 − η2) · ξ0

∣
∣

t

≤ lim
t→0

||Dξ1,r (t) − I |||η1 − η2||ξ0|
t

≤ |η1 − η2|
≤ d (η1, η2) . (3.6)

This gives for any ξ0, ξ1, ξ2, η ∈ S
2,

|Dξ1,r1Dξ2,r2G(η, ξ0)| ≤ 1. (3.7)

We now recall the following estimate for every k ≥ 1,  ≥ 0, and ζ, η ∈ S
d−1 [21]:

∣
∣
∣
∣F

()
N (ζ · η)

∣
∣
∣
∣ ≤ ck,N 2

(1 + Nd(ζ, η))k
, (3.8)

where ck, is a positive constant depending only on k, . This already gives the good
localization of FN (ξ · ξ0) at ξ0 ∈ S

2, for any k ≥ 1,

|FN (ξ · ξ0)| ≤ ck
(1 + Nd (ξ, ξ0))

k
. (3.9)

Let us proceed with localization of derivatives. For any ξ0, ξ1 ∈ S
2 and r = 1, 2, we

have the following chain rule:

Dξ1,r FN (ξ, ξ0) = lim
t→0

FN
(
Dξ1,r (t) ξ · ξ0

)− FN (ξ · ξ0)

t

= lim
t→0

(
FN

(
Dξ1,r (t) ξ · ξ0

)− FN (ξ · ξ0)
)

Dξ1,r (t) ξ · ξ0 − ξ · ξ0

Dξ1,r (t) ξ · ξ0 − ξ · ξ0

t

= F ′
N (ξ · ξ0) Dξ1,rG(ξ, ξ0).

We note that the above representation of the derivative also shows that it is a spherical
polynomial of degree ≤N . Furthermore, in the special case where ξ = ξ0 = ξ1, we
get

Dξ0,r FN (ξ0, ξ0) = F ′
N (1) lim

t→0

Dξ0,r (t) ξ0 · ξ0 − 1

t

= F ′
N (1) lim

t→0

cos t − 1

t
= 0. (3.10)

We require the following result that generalizes a lemma from [21]:
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Lemma 3.2 Let ξ0, η, η1, η2 ∈ S
2 with d

(
η j , η

) ≤ N−1, j = 1, 2. Then, for any
k ≥ 1,  ≥ 0,

∣
∣
∣F

()
N (η1 · ξ0) − F ()

N (η2 · ξ0)

∣
∣
∣ ≤ ck,d (η1, η2) N 2+1

(1 + Nd (η, ξ0))
k

. (3.11)

Proof First observe that by the triangle inequality for any η̃ such that d(η̃, η) ≤ N−1,

Nd (η, ξ0) ≤ N (d (η, η̃) + d (η̃, ξ0))

≤ N
(
N−1 + d (η̃, ξ0)

)

≤ 1 + Nd (η̃, ξ0) .

Applying this (3.8), and Lemma 3.1 yields

∣
∣
∣F

()
N (η1 · ξ0) − F ()

N (η2 · ξ0)

∣
∣
∣ ≤ max

d(η̃,η)≤N−1

∣
∣
∣F

(+1)
N (η̃ · ξ0)

∣
∣
∣ |η1 · ξ0 − η2 · ξ0|

≤ ck+1,+1N 2(+1)

(1 + Nd (η̃, ξ0))
k+1 d (η1, η2)

[
d (η, ξ0) + N−1

]

≤ cN 2+1d (η1, η2)

(1 + Nd (η, ξ0))
k

+ cN 2+1d (η1, η2)

(1 + Nd (η, ξ0))
k+1

≤ cN 2+1d (η1, η2)

(1 + Nd (η, ξ0))
k
.

��
As a conclusion from Lemma 3.2, we obtain the localization of the derivatives, i.e.,
for any ξ0, ξ1 ∈ S

2 and r = 1, 2,

∣
∣Dξ1,r FN (ξ, ξ0)

∣
∣ = lim

t→0

∣
∣FN

(
Dξ1,r (t) ξ · ξ0

)− FN (ξ · ξ0)
∣
∣

t

≤ lim
t→0

∣
∣FN

(
Dξ1,r (t) ξ · ξ0

)− FN (ξ · ξ0)
∣
∣

d
(
Dξ1,r (t) ξ, ξ

)

≤ ck N

(1 + Nd (ξ, ξ0))
k
. (3.12)

Next, we analyze second-order derivatives. By the rotation invariance of functions of
the type FN (ξ · ξ0), we may compute certain values of partial derivatives at the point
ξ0 = (−1, 0, 0). The rotations at the angle t associated with the partial derivatives at
ξ0 are

Dξ0,1 (t) =
⎛

⎝
cos t 0 sin t
0 1 0

− sin t 0 cos t

⎞

⎠ , Dξ0,2 (t) =
⎛

⎝
cos t sin t 0

− sin t cos t 0
0 0 1

⎞

⎠ .
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Let G(η) = G(η1, η2, η3) : R
3 → R, be any differentiable function. Following

Section 1.8 in [10], we compute for ξ0 = (−1, 0, 0) and η ∈ S
2,

Dξ0,1G (η) = lim
t→0

G
(
Dξ0,1 (t) η

)− G (η)

t
= η3∂1G (η) − η1∂3G (η) . (3.13)

Similarly,

Dξ0,2G (η) = lim
t→0

G
(
Dξ0,2 (t) η

)− G (η)

t
= η2∂1G (η) − η1∂3G (η) . (3.14)

In the special case G(η):=FN (η · ξ0), with ξ0 = (−1, 0, 0), we obtain by (3.13),

Dξ0,1FN (η, ξ0) = η3∂1FN (−η1) − η1∂3FN (−η1)

= −η3F
′
N (−η1) = −η3F

′
N (η · ξ0) .

Applying (3.14) with similar computation gives

Dξ0,2FN (η, ξ0) = −η2F
′
N (η · ξ0) .

This correlates with what we already observed [see (3.10)]; namely, that for any
ξ0 ∈ S

2,
Dξ0,1FN (ξ0, ξ0) = Dξ0,2FN (ξ0, ξ0) = 0. (3.15)

Using (3.13) and (3.14), wemay compute mixed partial derivatives at ξ0 = (−1, 0, 0),

Dξ0,2Dξ0,1FN (η, ξ0) = η2η3F
′′
N (η · ξ0) .

This implies that for ξ0 = (−1, 0, 0),

Dξ0,2Dξ0,1FN (ξ0, ξ0) = Dξ0,1Dξ0,2FN (ξ0, ξ0) = 0, (3.16)

but obviously, by the rotation invariance, (3.16) holds for any point ξ0 ∈ S
2. We also

get for ξ0 = (−1, 0, 0) using (3.13) and (3.14),

Dξ0,2Dξ0,2FN (η, ξ0) = η1F
′
N (η · ξ0) + η22F

′′
N (η · ξ0) .

With similar computations for Dξ0,1Dξ0,1FN , and the rotation invariance, we have for
any ξ0 ∈ S

2,

Dξ0,1Dξ0,1FN (ξ0, ξ0) = Dξ0,2Dξ0,2FN (ξ0, ξ0) = −F ′
N (1). (3.17)

123



194 Constr Approx (2015) 42:183–207

Proceeding to the next higher-order Lipschitz estimate for η, η1, η2 ∈ S
2, satisfying

d(η1, η), d(η2, η) ≤ N−1, we have

Dξ1,r FN (η1, ξ0) − Dξ1,r FN (η2, ξ0)

= F ′
N (η1 · ξ0) Dξ1,rG(η1, ξ0) − F ′

N (η2 · ξ0) Dξ1,rG(η2, ξ0)

= (
F ′
N (η1 · ξ0) − F ′

N (η2 · ξ0)
)
Dξ1,rG(η1, ξ0)

+ F ′
N (η2 · ξ0) (Dξ1,rG(η1, ξ0) − Dξ1,rG(η2, ξ0)).

Consequently, using (3.5), (3.6), (3.8), and (3.11) for  = 1 yields

∣
∣Dξ1,r FN (η1, ξ0) − Dξ1,r FN (η2, ξ0)

∣
∣

≤ ∣
∣F ′

N (η1 · ξ0) − F ′
N (η2 · ξ0)

∣
∣ d (η1, ξ0) + ∣

∣F ′
N (η2 · ξ0)

∣
∣ d (η1, η2)

≤ ck+1N 3

(1 + Nd (η · ξ0))
k+1 d (η1, η2)

(
d(η, ξ0) + N−1

)
+ ck N 2d (η1, η2)

(1 + Nd (η, ξ0))
k

≤ ck N 2d (η1, η2)

(1 + Nd (η, ξ0))
k
. (3.18)

This implies for any ξ0, ξ1, ξ2 ∈ S
2, r1, r2 = 1, 2,

∣
∣Dξ2,r2Dξ1,r1FN (ξ, ξ0)

∣
∣ ≤ ck N 2

(1 + Nd (ξ, ξ0))
k
. (3.19)

Similar calculations give

∣
∣Dξ1,r1Dξ2,r2FN (η1, ξ0) − Dξ1,r1Dξ2,r2FN (η2, ξ0)

∣
∣ ≤ ck N 3d (η1, η2)

(1 + Nd (η, ξ0))
k
, (3.20)

which in turn yields for any ξ0, ξ1, ξ2, ξ3 ∈ S
2, r1, r2, r3 = 1, 2,

∣
∣Dξ1,r1Dξ2,r2Dξ3,r3FN (ξ · ξ0)

∣
∣ ≤ ck N 3

(1 + Nd (ξ, ξ0))
k
. (3.21)

4 The Construction of the Interpolating Polynomial on S
2

According to Theorem2.1, a sufficient condition for the recovery of f from its ‘orthog-
onal projection’ onto VN (S2) is the existence of q ∈ VN , satisfying

q(ξm) = um, ∀ξm ∈ �, (4.1)

|q(ξ)| < 1, ∀ξ /∈ �, (4.2)
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for any signed sequence {um} with |um | = 1. Following the construction of [8] for
d = 2, we propose that the appropriate form for d = 3 is

q (ξ) :=
∑

ξm∈�

αmFN (ξ · ξm) + βmDξm ,1FN (ξ, ξm) + γmDξm ,2FN (ξ, ξm), (4.3)

where {αm}, {βm}, and {γm} are sequences of real coefficients, to be selected later.
We point out that, as explained in Sect. 3, the partial derivatives in (4.3) are spherical
harmonic polynomials of degree ≤N , and thus q ∈ VN (S2).

Thus, this section is devoted to the proof of the following proposition:

Proposition 4.1 If � ⊂ S
2 satisfies the separation condition of Definition 1.2, then

there exist coefficients {αm}, {βm}, and {γm} such that q of the form (4.3) obeys (4.1)
and (4.2).

According to Theorem 2.1, Proposition 4.1 immediately implies Theorem 1.3. The
proof of Proposition 4.1 follows the outline of [8] and is given by a series of lemmas,
as follows:

Lemma 4.2 If the separation condition of Definition 1.2 holds, then for any sequence
{um}, with um = {−1, 1}, there exist coefficients {αm}, {βm}, and {γm}, such that

q(ξm) = um, (4.4)

Dξm ,1q(ξm) = Dξm ,2q(ξm) = 0, (4.5)

for all ξm ∈ �. Additionally, for any k ≥ 3, there exists a constant ck such that

‖α‖∞ ≤ 1 + ck
νk−1 , (4.6)

‖β‖∞ ≤ ck
Nνk−1 , (4.7)

‖γ ‖∞ ≤ ck
Nνk−1 , (4.8)

with ν > 0, the constant from the separation condition. Moreover, if u1 = 1, then

α1 ≥ 1 − ck
νk−1 . (4.9)

Lemma 4.3 If the separation condition in Definition 1.2 holds, then the polynomial
(4.3) as constructed in Lemma 4.2 satisfies |q(ξ)| < 1 for any ξ ∈ S

2, obeying

d (ξ, ξm) ≤ σ

N

for some ξm ∈ � and sufficiently small σ > 0.
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Lemma 4.4 If the separation condition in Definition 1.2 holds, then the polynomial
(4.3) as constructed in Lemma 4.2 satisfies |q(ξ)| < 1 for any ξ ∈ S

2, obeying

d (ξ, ξm) ≥ σ

N
, ∀ξm ∈ �,

where σ is the constant of Lemma 4.3.

4.1 Proof of Lemma 4.2

The gradient of any q of the form (4.3), at a point ξk ∈ �, is given by

Dξk ,r q (ξk) =
∑

ξm∈�

αmDξk ,r FN (ξk, ξm) + βmDξk ,r Dξm ,1FN (ξk, ξm)

+ γmDξk ,r Dξm ,2FN (ξk, ξm) , r = 1, 2.

Conditions (4.4) and (4.5) may be written in matrix notation as

⎡

⎣
F0 F̃1

1 F̃2
1

F1
1 F1,1

2 F1,2
2

F2
1 F2,1

2 F2,2
2

⎤

⎦

⎡

⎣
α

β

γ

⎤

⎦ =
⎡

⎣
u
0
0

⎤

⎦ , (4.10)

where

F0 := {
FN (ξk · ξm)

}
k,m ,

Fr
1 := {

Dξk ,r FN (ξk, ξm)
}
k,m , r = 1, 2,

F̃r
1 := {

Dξm ,r FN (ξk, ξm)
}
k,m , r = 1, 2,

Fr1,r2
2 := {

Dξk ,r1Dξm ,r2FN (ξk, ξm)
}
k,m , r1, r2 = 1, 2,

and u = {um}m, α = {αm}m, β = {βm}m, γ = {γm}m . For convenience, we occasion-
ally write (4.10) as

F =
[
F0 F̃1
F1 F2

]

.

Our goal was to show that F is invertible and to estimate the coefficients α, β, γ . To
this purpose, we require the following:

Lemma 4.5 Let ξ0 ∈ �, where � satisfies the separation condition, and let ξ ∈ S
2

such that d(ξ, ξ0) ≤ �/2. Then, for any k ≥ 3, there exists ck > 0 such that for any
ξ̃1, ξ̃2, ξ̃3 ∈ S

2 and r1, r2, r3 = 1, 2,
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∑

ξm∈�\ξ0
|FN (ξ · ξm)| ≤ ck

νk−1 , (4.11)

∑

ξm∈�\ξ0

∣
∣
∣Dξ̃1,r1

FN (ξ, ξm)

∣
∣
∣,

∑

ξm∈�\ξ0

∣
∣Dξm ,r1FN (ξ, ξm)

∣
∣ ≤ ck N

νk−1 , (4.12)

∑

ξm∈�\ξ0

∣
∣
∣Dξ̃1,r1

Dξ̃2,r2
FN (ξ, ξm)

∣
∣
∣ ≤ ck N 2

νk−1 , (4.13)

∑

ξm∈�\ξ0

∣
∣
∣Dξ̃1,r1

Dξ̃2,r2
Dξ̃3,r3

FN (ξ, ξm)

∣
∣
∣ ≤ ck N 3

νk−1 . (4.14)

Proof Fix ξ0 ∈ �. Let �m be the ‘ring’ about ξ0 such that

�m :=
{

ξ ∈ S
2 : νm

N
< d (ξ, ξ0) ≤ ν (m + 1)

N

}

, 0 ≤ m ≤
⌊

πN

ν
− 1

⌋

.

The surface area of the ring is given by [2]

|�m | = 2π
(
cos

( ν

N
m
)

− cos
( ν

N
(m + 1)

))
.

By assumption, the set � satisfies the separation condition in Definition 1.2. Hence,
the points are the center of pairwise disjoint caps of area 2π

(
1 − cos ν

2N

)
. Observe

that the cap of any ξk ∈ �m is contained in the ring

�̃m :=
{

ξ ∈ S
2 : max

{
ν (m − 1/2)

N
, 0

}

< d (ξ, ξ0) ≤ min

{
ν (m + 3/2)

N
, π

}}

.

Therefore, we can bound the number of points in the ring �m by

# {ξk ∈ �m} ≤
∣
∣
∣�̃m

∣
∣
∣

2π
(
1 − cos ν

2N

) = 2π
(
cos

(
ν
N (m − 1/2)

)− cos
(

ν
N (m + 3/2)

))

2π
(
1 − cos ν

2N

)

= sin
(

ν
2N (2m + 1)

)
sin

(
ν
N

)

sin2
(

ν
4N

) ≤ sin
(

ν
2N (2m + 1)

)
4 sin

(
ν
4N

)

sin2
(

ν
4N

)

≤ 4

∣
∣
∣
∣
∣

sin
(

ν
2N (2m + 1)

)

sin
(

ν
4N

)

∣
∣
∣
∣
∣
≤ cm, (4.15)

where the constant does not depend on N or ν. Since d(ξ, ξ0) ≤ �/2, the point ξ is
well separated from the points ξm ∈ �\ξ0. Therefore, using (3.9) and (4.15), we get
for k ≥ 3,
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∑

ξm∈�\ξ0
|FN (ξ · ξm)| ≤ ck

∞∑

m=1

m

(1 + mν)k

≤ ck
νk−1

∞∑

m=1

1

mk−1 ≤ ck
νk−1 .

This proves (4.11). Using (3.12), similar calculations prove (4.12) by

∑

ξm∈�\ξ0

∣
∣
∣Dξ̃1,r1

FN (ξ, ξm)

∣
∣
∣ ≤ ck N

∞∑

m=1

m

(1 + mν)k

≤ ck N

νk−1 .

The estimates (4.13) and (4.14) are proved in a similar manner. ��
We successively use the fact that a sufficient condition for the invertibility of a matrix
M is

‖I − M‖∞ < 1, (4.16)

where ‖M‖∞ := maxi
∑

j |mi, j |. Furthermore (see, e.g, [15], Corollary 5.6.16),

‖M−1‖∞ ≤ 1

1 − ‖I − M‖∞
. (4.17)

The proof of Lemma 4.2 also requires the following:

Lemma 4.6 If the separation condition holds, then

‖I − F0‖∞ ≤ ck
νk−1 , (4.18)

‖Fr
1 ‖∞, ‖F̃r

1 ‖∞ ≤ N
ck

νk−1 , r = 1, 2, (4.19)

‖F1,2
2 ‖∞, ‖F2,1

2 ‖∞ ≤ N 2 ck
νk−1 , (4.20)

∥
∥−F ′

N (1)I − Fr,r
2

∥
∥∞ ≤ N 2 ck

νk−1 , (4.21)

‖(Fr,r
2 )−1‖∞ ≤ 1

N 2
(
c̃ − ck

νk−1

) r = 1, 2, (4.22)

where the constant c̃ is given by (3.4).

Proof Observe that by (3.3), F0(k, k) = FN (1) = 1. Applying (4.11) to any row in
the matrix F0 yields (4.18)

‖I − F0‖∞ = max
ξ j∈�

∑

ξi∈�,ξi �=ξ j

|FN (ξ j · ξi )| ≤ ck
νk−1 .
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According to (3.15), the diagonals of Fr
1 and F̃r

1 , r = 1, 2, are zero. Applying (4.12)
gives

∥
∥Fr

1

∥
∥∞ = max

ξ j∈�

∑

ξi∈�,ξi �=ξ j

|Dξ j ,r FN (ξ j , ξi )| ≤ Nck
νk−1 .

In a similar manner, observing from (3.16) that the diagonals of F1,2
2 and F2,1

2 are
zero, (4.13) gives (4.20). Next, we derive from (3.17) and (4.13) that

∥
∥−F ′

N (1)I − Fr,r
2

∥
∥∞ ≤ N 2ck

νk−1 .

Ultimately, (4.17), (4.21), and (3.4) imply (4.22). ��

We may now proceed with the proof of Lemma 4.2. To show that F is invertible for
sufficiently large ν, we show that both F2 and its Schur complement are invertible
[27]. From (4.21), we know that F2,2

2 is an invertible matrix for sufficiently large ν.

So, F2 is invertible if the Schur complement of F2,2
2 in F2, given by

Fs,2 := (F2/F
2,2
2 ) = F1,1

2 − F1,2
2

(
F2,2
2

)−1
F2,1
2 ,

is invertible as well. Using the estimates of Lemma 4.6, (3.4), and assuming νk−1 ≥
(1 + c̃ck)/c̃2, we get

∥
∥
∥
∥I − Fs,2

−F ′
N (1)

∥
∥
∥
∥

∞
≤
∥
∥
∥
∥
∥
I − F1,1

2

−F ′
N (1)

∥
∥
∥
∥
∥∞

+ 1
∣
∣F ′

N (1)
∣
∣

∥
∥
∥F1,2

2

∥
∥
∥∞

∥
∥
∥F2,1

2

∥
∥
∥∞

∥
∥
∥
∥

(
F2,2
2

)−1
∥
∥
∥
∥∞

≤ ck
νk−1 .

This implies that

‖F−1
s,2 ‖∞ ≤ 1

F ′
N (1)

1

1 − ck
νk−1

≤ 1

c̃N 2

(

1 + ck
νk−1 − ck

)

. (4.23)

Since F2 is invertible for sufficiently large ν, F is invertible if the Schur complement
Fs :=F/F2 is invertible as well. Note that

(F/F2,2
2 ) =

[
F0 F̃1

1
F1
1 F1,1

2

]

−
[
F̃2
1

F1,2
2

] (
F2,2
2

)−1 [
F2
1 F2,1

2

]

=
[
F0 − F̃2

1

(
F2,2
2

)−1
F2
1 F̃s,1

Fs,1 Fs,2

]

,
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where

Fs,1 := F1
1 − F1,2

2 (F2,2
2 )−1F2

1 , (4.24)

F̃s,1 := F̃1
1 − F̃2

1 (F2,2
2 )−1F2,1

2 . (4.25)

According to Theorem 1.4 in [27],

Fs =
(
F/F2,2

2

)
/
(
F2/F

2,2
2

)
,

and thus, the Schur complement of F2 is given by

Fs = F0 − F̃s,1F−1
s,2Fs,1 − F̃2

1 (F2,2
2 )−1F2

1 .

Using Lemma 4.6 and assuming νk−1 ≥ (1 + ck)/c̃, we get

‖Fs,1‖∞ ≤ ‖F1
1 ‖∞ + ‖F1,2

2 ‖∞‖(F2,2
2 )−1‖∞‖F2

1 ‖∞ ≤ ck N

νk−1 . (4.26)

A similar estimate holds for ‖F̃s,1‖∞. Hence, under similar assumptions on ν,

‖I − Fs‖≤‖I − F0‖∞+‖Fs,1‖∞‖F̃s,1‖∞‖F−1
s,2 ‖∞+‖F2

1 ‖∞‖F̃2
1 ‖∞‖(F2,2

2 )−1‖∞

≤ ck
νk−1 + ck

ν2(k−1)

1

c̃

(

1 + ck
νk−1 − ck

)

+ ck
ν2(k−1)

1

c̃ − ck
νk−1

≤ ck
νk−1 . (4.27)

Moreover,

‖F−1
s ‖∞ ≤ 1

1 − ck
νk−1

= 1 + ck
νk−1 − ck

. (4.28)

Therefore, for sufficiently large ν, (4.10) is an invertible matrix. Hence, we can cal-
culate the coefficient sequences by

⎡

⎣
α

β

γ

⎤

⎦ =
⎡

⎣
I

−F−1
s,2Fs,1

(F2,2
2 )−1(F2,1

2 F−1
s,2Fs,1 − F2

1 )

⎤

⎦F−1
s u. (4.29)

We now proceed to estimate the coefficients. We begin with the observation that

‖α‖∞ ≤ ‖F−1
s ‖∞ ≤ 1 + ck

νk−1 − ck
.
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In addition, using (4.23), (4.26), and (4.28), for sufficiently large ν, we get

‖β‖∞ ≤ ‖F−1
s,2 ‖∞‖Fs,1‖∞‖F−1

s ‖∞

≤ ck
Nνk−1 .

Using the same estimates with additional estimates from Lemma 4.6 gives

‖γ ‖∞ ≤ ‖(F2,2
2 )−1‖‖F1,2

2 ‖∞‖F−1
s,2 ‖∞‖Fs,1‖∞‖F−1

s ‖∞

≤ ck
Nνk−1 .

Finally, if u1 = 1, we can apply (4.27), (4.28), and the assumption that |um | = 1, for
each m, to obtain

α1 =
((

I − (I − F−1
s )

)
u
)

1

= u1 −
(
(I − F−1

s )u
)

1

≥ 1 − ‖F−1
s ‖∞‖I − Fs‖∞

≥ 1 − ck
νk−1 .

This completes the proof of Lemma 4.2.

4.2 Proof of Lemma 4.3

Without loss of generality, assume that at ξ1 ∈ �, the interpolation condition is
q(ξ1) = 1. Let ξ ∈ S

2 such that d(ξ1, ξ) ≤ σ/N for sufficiently small 0 < σ < 1 (to
be chosen later). The Hessian of q(ξ) at ξ is

H (q) (ξ) =
[ (

Dξ,1
)2
q (ξ) Dξ,1Dξ,2q (ξ)

Dξ,1Dξ,2q (ξ)
(
Dξ,2

)2
q (ξ)

]

.

Wewish to show that for sufficiently small σ > 0 and large enough ν, det (H (ξ)) > 0
and Tr (H (ξ)) < 0, which implies that both eigenvalues are strictly negative, and
therefore, q is concave at ξ . For r = 1, 2,

(
Dξ,r

)2
q (ξ) ≤ α1

(
Dξ,r

)2
FN (ξ, ξ1) + ‖β‖∞

∣
∣
∣
(
Dξ,r

)2
Dξ1,1FN (ξ, ξ1)

∣
∣
∣

+ ‖γ ‖∞
∣
∣
∣
(
Dξ,r

)2
Dξ1,2FN (ξ, ξ1)

∣
∣
∣

+ ‖α‖∞
∑

ξm∈�\ξ1

∣
∣
∣
(
Dξ,r

)2
FN (ξ, ξm)

∣
∣
∣
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+ ‖β‖∞

⎛

⎝
∑

ξm∈�\ξ1

∣
∣
∣
(
Dξ,r

)2
Dξm ,1FN (ξ, ξm)

∣
∣
∣

⎞

⎠

+ ‖γ ‖∞

⎛

⎝
∑

ξm∈�\ξ1

∣
∣
∣
(
Dξ,r

)2
Dξm ,2FN (ξ, ξm)

∣
∣
∣

⎞

⎠ .

We estimate the first left-hand term using (4.9), (3.17), (4.6), and then (3.20),

α1
(
Dξ,r

)2
FN (ξ, ξ1) = α1

(
Dξ,r

)2
FN (ξ, ξ)

+α1

((
Dξ,r

)2
FN (ξ, ξ1) − (

Dξ,r
)2

FN (ξ, ξ)
)

≤ −
(
1 − ck

νk−1

)
F ′
N (1) +

(

1 + ck
νk−1 − ck

)

ck N
3d (ξ, ξ1)

≤ − N 2
(

c̃
(
1 − ck

νk−1

)
−
(

1 + ck
νk−1 − ck

)

ckσ

)

.

The next two terms are estimated using the bounds on α, β (4.7), (4.8), and (3.21),

‖β‖∞
∣
∣
∣
(
Dξ,r

)2
Dξ1,1FN (ξ, ξ1)

∣
∣
∣ , ‖γ ‖∞

∣
∣
∣
(
Dξ,r

)2
Dξ1,2FN (ξ, ξ1)

∣
∣
∣ ≤ ck

νk−1 N
2.

Estimates (4.6) and (4.13) give

‖α‖∞
∑

ξm∈�\ξ1

∣
∣
∣
(
Dξ,r

)2
FN (ξ, ξm)

∣
∣
∣ ≤

(

1 + ck
νk−1 − ck

)
ck

νk−1 N
2.

Using (4.7), (4.8), and (4.14),

‖β‖∞

⎛

⎝
∑

ξm∈�\ξ1

∣
∣
∣
(
Dξ,r

)2
Dξ1,1FN (ξ, ξ1)

∣
∣
∣

⎞

⎠ ,

‖γ ‖∞

⎛

⎝
∑

ξm∈�\ξ1

∣
∣
∣
(
Dξ,r

)2
Dξ1,2FN (ξ, ξ1)

∣
∣
∣

⎞

⎠ ≤ ck
νk−1 N

2.

Thus, for sufficiently small σ and large ν,

(
Dξ,r

)2
q (ξ) ≤ −N 2

(

c̃
(
1 − ck

νk−1

)
−
(

1 + ck
νk−1 − ck

)

ckσ + ck
νk−1

)

< 0.
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We proceed with the estimate of the two other entries of the Hessian

∣
∣Dξ,1Dξ,2q (ξ)

∣
∣ ≤ α1

∣
∣Dξ,1Dξ,2FN (ξ, ξ1)

∣
∣+ ‖β‖∞

∣
∣Dξ,1Dξ,2Dξ1,1FN (ξ, ξ1)

∣
∣

+ ‖γ ‖∞ Dξ,1Dξ,2Dξ1,2FN (ξ, ξ1)

+ ‖α‖∞
∑

ξm∈�\ξ1

∣
∣Dξ,1Dξ,2FN (ξ, ξm)

∣
∣

+ ‖β‖∞

⎛

⎝
∑

ξm∈�\ξ1

∣
∣Dξ,1Dξ,2Dξ1,1FN (ξ, ξ1)

∣
∣

⎞

⎠

+ ‖γ ‖∞

⎛

⎝
∑

ξm∈�\ξ1

∣
∣Dξ,1Dξ,2Dξ1,2FN (ξ, ξ1)

∣
∣

⎞

⎠ .

Using first (4.6), (3.16), and then (3.20) yields

α1
∣
∣Dξ,1Dξ,2FN (ξ, ξ1)

∣
∣≤

(

1+ ck
νk−1−ck

)
∣
∣Dξ,1Dξ,2FN (ξ, ξ1)−Dξ,1Dξ,2FN (ξ, ξ)

∣
∣

≤
(

1 + ck
νk−1 − ck

)

ck N
3d (ξ, ξ1)

≤
(

1 + ck
νk−1 − ck

)

ckσN 2.

Combining with similar estimates as in the previous case results in

∣
∣Dξ,1Dξ,2q (ξ)

∣
∣≤N 2

((

1 + ck
νk−1 − ck

)

ckσ + ck
νk−1 +

(

1 + ck
νk−1 − ck

)
ck

νk−1

)

.

It is now clear that we can choose sufficiently small σ and large enough ν such that
∣
∣Dξ,1Dξ,2q (ξ)

∣
∣ <

∣
∣
∣
(
Dξ,r

)2
q (ξ)

∣
∣
∣ and

(
Dξ,r

)2
q (ξ) < 0, r = 1, 2. This gives that

det (H (ξ)) > 0 and Tr (H (ξ)) < 0. To finish the proof, we have to show that
q(ξ) > −1,

q(ξ) ≥ α0FN (ξ · ξ1) − ‖α‖∞
∑

ξm∈�\ξ1
|FN (ξ · ξm)|

− ‖β‖∞
∑

ξm∈�

|Dξ,1FN (ξ, ξm)| − ‖γ ‖∞
∑

ξm∈�

|Dξ,2FN (ξ, ξm)|

≥
(
1 − c

νk−1

)
(1 + FN (ξ · ξ1) − FN (ξ · ξ)) −

(
1 + ck

νk−1

) ck
νk−1 − 2ck

ν2(k−1)

≥
(
1 − c

νk−1

)
(1 − ckσ) − 2ck

ν2(k−1)
.
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Clearly, for large ν and small σ , q(ξ) > −1. For the case where q(ξ1) = −1, the proof
is almost identical except for the fact that we show that q is convex in the neighborhood
of ξ1 and q(ξ) < 1, for d(ξ, ξ1) < σ/N .

4.3 Proof of Lemma 4.4

Let ξ ∈ S
2 and ξ1 ∈ �, such that σ/N ≤ d(ξ, ξ1) ≤ �/2. We need to show that for

sufficiently large ν, |q(ξ)| < 1. First observe that using only the first-order estimate
for FN (ξ · ξ1), with the normalization FN (ξ1, ξ1) = 1,

|α1| |FN (ξ · ξ1)| ≤
(
1 + ck

νk−1

) 1

1 + σ
.

Consequently, for sufficiently large ν, using also the estimates of Lemmas 4.2, 4.5,
and (3.12) gives

|q (ξ)| ≤ ‖α‖∞ |FN (ξ · ξ1)| + ‖β‖∞
∣
∣Dξ1,1FN (ξ, ξ1)

∣
∣+ ‖γ ‖∞

∣
∣Dξ1,2FN (ξ, ξ1)

∣
∣

+ ‖α‖∞
∑

ξm∈�\ξ1
|FN (ξ · ξm)| + ‖β‖∞

∑

ξm∈�\ξ1

∣
∣Dξ1,1FN (ξ, ξm)

∣
∣

+ ‖γ ‖∞
∑

ξm∈�\ξ1

∣
∣Dξ1,2FN (ξ, ξm)

∣
∣

≤
(
1 + ck

νk−1

) 1

1 + σ
+ 2ck

νk−1

ck
(1 + σ)k

+
(
1 + ck

νk−1

) ck
νk−1 + 2ck

ν2(k−1)

< 1.

The case where d(ξ, ξm) > �/2 for each ξm ∈ � is easier. In this case, where ξ is
well separated from all the points of �, we can use estimates similar to the those of
Lemma 4.5 to get

|q(ξ)| ≤ ‖α‖∞
∑

ξm∈�

|FN (ξ · ξm)| + ‖β‖∞
∑

ξm∈�

|Dξm ,1FN (ξ · ξm)|

+ ‖γ ‖∞
∑

ξm∈�

|Dξm ,2F(ξ · ξm)|

≤
(
1 + ck

νk−1

) ck
νk−1 + ck

ν2(k−1)
.

This concludes the proof. ��

5 Nonnegative Signals

In this section, we show that for the special case of nonnegative Dirac ensembles

f =
∑

m

cmδξm , cm > 0, ξm ∈ �, (5.1)
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a sparsity condition is sufficient for exact recovery (compare with the discrete case
[12]). We start by presenting a sufficient condition for the reconstruction of the signal
from its projection onto VN . Here, we give a general version of the theorem as follows:

Theorem 5.1 Let f = ∑
m cmδξm , where� = {ξm} ⊂ A, with A a compact manifold

in Rd and cm > 0. Let 
D be a linear space of continuous functions of dimension D
in A. For any basis {Pk}Dk=1 of 
D, let yk = 〈 f, Pk〉 for all 1 ≤ k ≤ D. If there exists
q ∈ 
D such that

q(ξm) = 1 ξm ∈ �, (5.2)

|q(ξ)| < 1 ξ /∈ �, (5.3)

then f is the unique minimizer over all nonnegative measures of the following:

ming∈M(A)‖g‖T V s.t. yk = 〈g, Pk〉, k = 1, . . . , D. (5.4)

Proof Let g be the solution of (5.4), and set g = f + h, h �= 0. Let h = h� + h�C

be the Lebesgue decomposition of h relative to | f |, so that h� is supported on �.
Additionally, h� = ∑

dmδξm for some real {dm}. Also, since g is a nonnegative
measure, f + h� is also nonnegative, implying cm + dm ≥ 0 for all ξm ∈ �. Thus,
‖ f + h�‖T V = ∑

m (cm + dm).
We observe that

0 = 〈q, h〉 = 〈q, h�〉 + 〈q, h�C 〉 =
∑

m

dm + 〈q, h�C 〉. (5.5)

Plainly, if h�C = 0, then h� = 0, and consequently h = 0. Otherwise, if h�C �= 0,
we obtain ∣

∣
∣
∣
∣

∑

m

dm

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

∫

qdh�C

∣
∣
∣
∣ < ‖h�C ‖T V . (5.6)

This leads to the following contradiction:

‖ f ‖T V ≥ ‖ f + h‖T V = ‖ f + h�‖T V + ‖h�C ‖T V
>
∑

m

(cm + dm) +
∣
∣
∣
∣
∣

∑

m

dm

∣
∣
∣
∣
∣

= ‖ f ‖T V +
∣
∣
∣
∣
∣

∑

m

dm

∣
∣
∣
∣
∣
+
∑

m

dm ≥ ‖ f ‖T V . (5.7)

Therefore, f = g. ��
We now show that a polynomial q ∈ VN (Sd−1), d ≥ 2, obeying (5.2) and (5.3) can

be constructed with a sparsity condition replacing the separation condition. Assuming
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that |�| = s ≤ N , we construct the following polynomial:

q(ξ) := 1 − 2−(s+1)
s∏

m=1

(1 − ξ · ξm) . (5.8)

As already noted, the function G(ξ) = ξ · ξ0 is a spherical harmonic and thus also
1−G(ξ). A product of spherical harmonics of degrees N1, N2 is a spherical harmonic
of degree N1+N2, and the computation of the corresponding representation is known
as Clebsch–Gordan. Plainly, as long as s ≤ N , q ∈ VN . Moreover, q(ξm) = 1, and
0 ≤ q(ξ) < 1 for any ξ /∈ �.

As a result of the above construction, we may apply Theorem 5.1 to obtain exact
recovery for nonnegative Dirac ensembles whenever the sparsity condition |�| ≤ N
holds.

Observe that the case of univariate nonnegative Dirac trains and spaces of trigono-
metric polynomials is a special case of the above, with d = 2. Therefore, a sparsity
condition can replace the separation condition of [8]. For d = 2, the construction of
the interpolating polynomial over knots {tm} ⊂ [−π, π ] takes the form

q(t) = 1 − 2−(s+1)
s∏

j=1

(1 − cos(t − tm)) , t ∈ [−π, π ]. (5.9)

Similarly, in [6], the authors showed that the separation condition is a sufficient
condition for the reconstruction of signals of the form (1.3) from their projection onto
the space of algebraic polynomials of degree N over [−1, 1]. If the signal is known
to be nonnegative, a sufficient condition for reconstruction is |�| ≤ N/2, by the
construction of the following algebraic polynomial (see also [11]):

q(ξ) = 1 − 4−(s+1)
s∏

i=1

(ξ − ξm)2. (5.10)
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