Banach Spaces

Definition Banach space is a complete normed vector space B over a field F = {R,(C},

Vector space: 30 B, Vf,geB, a,feF =af +p5geB.
Norm:
i. |f|20and|f|=0& f=0.

ii. feBonlyif |f], <co.
iii. ||af||=|a|||f||,‘v’aeF,‘v’feB.
iv.  Triangle inequality | f + g <| f|+[g]-

Complete: Every Cauchy sequence in B converges to an element of B.

Measure

In this course we only use the standard Lebesgue measure <> the volume of a (measurable) set.
Example: Q=[0,2]' cR", u(Q)=|0]=2".
We will need the notion of zero measure (volume). Example: a set of discrete points

Lp Spaces

Q c R" domain. Examples: Q=[a,b]c R, Q=[0,1]' cR",Q=R".

(Uf (x)‘pdx)up, 0< p<omo,
esssup|f (x)), p = oo,

xeQ

[0

esssgp|f (x)| :=sup{A>0: ‘{x:|f (x)|= A}‘ >O}.

A>0

For 1< p<oo, L () are Banach spaces.
For 0<p<1, L, (Q)are Quasi-Banach spaces (quasi-triangle inequality holds)

[ +al, <Ifl;+lal;-

Theorem [Hélder] 1< p<owo, fel,gel,

I fol= trol=lrel, <l ), Jol,, - +=1

Lemma Young’s inequality for products,



p p’
absa—+b— %+i=1, Va,b>0.

p p P’

Proof of lemma The logarithmic function is concave. Therefore

Iog(lap +i,bp']: Iog(lap +(1—ljbp)
p Y p Y

Z%Iog(ap)+%log(b”')

=log(a)+log(b)=1log(ab).
Since the logarithmic function is increasing, we are done (or we take exp on both sides).

Proof of theorem If p=ow
Jlfal<[fl. [ lal<1f]. lal-

The proof is similar for p=1. So, assume now 1< p <o and ||f||p :||g||p, =1.

Integrating pointwise and applying Young’s inequality almost everywhere, gives
ACOCIES R
_[Q‘f(x)g(x)‘dxgjﬂ[‘ | +‘ ,‘ dx

P P

1 1 ’
:ng‘f (x)‘p dx+?J'Q‘g(x)‘p dx

pp
Now assuming f,g =0 (else, we are done)

I |7 (o (x)

——=dx<1=| |fg|<|f]l [l9].
[ Tol, ol fal=[ 1,1,

Schwartz inequality p=2

(t.9),=|], 19| < [, Ifal =0 tal, <[ 7. o]

The L, spaces are not comparable on unbounded domains
Example We will use Q=R . Assume 0<q< p<o®

Choose
0, |x<1
f(x)=< 1
( ) W, |X|>1.
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Wehave fel (R), feL (R)

Now choose
1
—— . [¥<1
f(x) — |X|l/p | |
0 x| >1

Wehave f el (R), feL (R)

Theorem If | <0, 0<q<p, fel (Q) then
LA < 1 P

Proof For p =
o1, =(J, o o) <o ([ )" =), 1o
For g < p <o define r=p/q>1
=== (0 ) ()
(1)

Theorem [Minkowski] For 1< p<w, Vf,gel,,
[£-+all, <0, +loll, -

Proof for 1< p<oo (p =1 is easier). W.l.g f,g>0. We apply Holder twice,

J(f+a) =[1(f+9) +[o(f+g)"

<(Ifll, +lol, )(J(f +9)" )

(11, +hal, )(J(f +0) )“/p

(||f|| +[al, )f(”g) (I(f+g) )_l’p.

Theorem For 0< p <1, we have

M | <X

iy |f+ g||p < 21”"1(|| f ||p +||g||p) or in general

N
2 f
k=1

N
<N ) Al -
p = ’

Proof The quasi-triangle inequality (ii) is derived from (i). Observe first
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Then

Up

N Yp N N ape N
SOTARD NS RN bl B D YR B S 1)
p() =) k=1 k=1 k=1 k=1

Holder

N
2 f

k=1

To prove (i), we need the following lemma
Lemma | For 0< p <1 and any sequence of non-negative a = {ak} ,

(Z akjp <>al

k X

Proof Observe that it is sufficient to prove (a, +a,)° <a +a} and then apply induction.

To prove the inequality use h(t):=t" +1—(t+1)" for t>0. h(0)=0 and h'(t)= pt"* - p(t+1)"" >0.
Therefore, h(t)>0, for t >0. This gives t”+1>(t+1)". Setting t =a,/a, gives

p p
& 1> & 1 PygP> P
[azj + _[a2+J =>a’+a) >(a+a,) .

Proof of Theorem (i) : Simply apply the lemma pointwise for x e Q and then Tonelli’s theorem for the
exchange of integration and sum

2
k

: < jg(;\ fi (x)\jp dx < jg(;\ f (x)\"jdx = zk:jg\ f (x)| dx = ;” P

O
Definition The space 1 (Z), 0 < p<co, is the space of sequences a = {a, |
finite

< » for which the following norm is

1Up
(Z|ak|pj , 0<p<oo,
k

lal,, =
Slip|ak|, p = .
Lemma Il | |, for p<q. That is, for any sequence a={a,
lall, <lall, -

Proof Case of =, forany jeZ,
1Up

Up
ol=(al")" <(Zar | ke,
Therefore,
Jol, =sunla|<[al, -
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For g <, we have

() < Slar) Sl = (zar| <(zhr]

Hilbert spaces and L, (Q)

Def Hilbert space H : Complete metric vector space induced by an inner product <> ‘HxH >C.
Properties of the inner product:

i.  symmetric (f,g)=(g,f),
ii. linear (af +8f,,9)=a(f,9)+B(f,.0),
iii.  Positive definite (f, f)>0 ,with (f,f)=0< f=0.

The natural norm | f||, ==(f, f>l/2 satisfies
Q) Cauchy-Schwartz
(f.a) <[l ol -

(i) Triangle inequality (is based on Cauchy-Schwartz)

2
[ +al =[ [ +2re(f,0)+lal" <I I+ 2] tllla ol = (If+[a)"

So, a Hilbert space is a Banach space.

Examples
O L) ¢ (@), = Yol —(zwj
(i) L,(Q) : f,g measurable, ( J' x)dx

1.0 —||f||—ff“2 (caf, [ (0fex)

For Q=R",C,=1.For Q=[-z,z]",C, =

(22)"
Sobolev spaces

Multivariate derivatives: A partial derivative of order m

a=(a,...,a,) e, D“f=ﬁ, |a|:=iZ:1:ai=m.

Definition C" (Q) : The space of all continuously differentiable functions of degree m in the classical sense.
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- ;ﬂHDa f L(Q) ’

The semi-norm

|f

-Slel,

c"(Q)

)= g” f (k)Hm is a norm

polynomials of degree m—1 as a null-space.

Examples C™ ([a, b]) is a semi-norm with the

®) :Hf(m) -

Definition Sobolev spaces W, (Q2), 1< p<o

Def I For 1< p <o, the closure of the compactly supported smooth functions C, (Q) with respect to the norm
> [P

.For p=oo, we take W, :=C".
Lp(©)
Def I1 We define the space of test-functions C; (€2) - continuously differentiable with compact support in Q.
Let fel,(Q)NL(Q). Now for a €Z], |o|=r, g:=D“f is the distributional (generalized) derivative of
f ifforall geCy(Q)

—_{(_ lef a
Jo09=(-2)" [, D¢

Xx+1 -1<x<0,

Example (assignment): For H (x):=41-x, 0<x<1, , "
0, else. .
11 _1SX<O' oo r -
H'(x)=g(x)={-1 0<x<1, . oo b
0, else.

So, in this sense H eW,(R), 1< p<oo.

Now, we can define the Sobolev space by taking the norm below over the distributional derivatives.

The Sobolev norm and semi-norm. We require that the distributional derivatives exist as functions(!) in

L,(€) and
|f|| Z\D“\ <o ZHD“

P
jal<r jaf=r

Theorem W' is a Banach space.



Theorem For a ‘smooth’ domain Q — R", and any 0< j <r, there exist a constant(s) C > 0, such that for any
feW, (Q),

1, <c(fl,, +I7l,)
11, <<l +clfl,).

jir (r=j)Ir
11, <Cltl It ™

r.p

Remarks
(i) Sometimes one sees in textbooks a definition || f ||W,(Q) =l @ +|f |W,(Q) , since by the theorem

” f ”LP(Q) +| f |Wp’(Q) < an‘ ‘Lp(Q) =C (” f ”LD(Q) +| f |Wp’(Q)) '

(i)  The constants depend on the ‘smoothness’ of the boundary 0Q.

D*f

Trigonometric polynomials and the Fourier Series

We now focus on the domain T =[-7, 7] and 27 - periodic functions. They are extended f (x+2zk)= f (x),
keZ.

Periodic...what does it mean for us? Example, the function f (X) = X is not continuous as a periodic function.

L, (T), is a Hilbert space equipped with the dot-product

<f,g>=%jf(x)ﬁdx.

The exponents are an orthonormal basis. For any f €L, (T)

F(x)=3 f(k)e* | f‘(k):<f,eik->=2ij f(x)e " dx.

sz

The partial Fourier sum

Convergence in L, means that forany f eL,(T),

. .17 2
lim | f —SN||1(T) :Llﬂgﬂf (X)=Sy (x)| dx=0.

Observe that we are not saying anything on the rate of convergence.

Observe convergence is not pointwise! There exists a continuous periodic function f : T — R such that

st -3 10

—> 00,

N—o




There are even more exotic constructions! Conclusion: “Don’t bring a knife to a gun fight” = Do not apply in
L, a Hilbert space/ L, tool.

Parseval identity

I =]F (o)

Also,
> f(k)e*=1(0 +i k) (coskx+isinkx)+ f (—k)(coskx —isinkx)
k k=1
i i cos kx + b, sinkx
where
— f(K)+ f(_k)zlj £ (x) cos (kx)dx
T
b =i(f(k)-f(- )ziff x)sin (kx)d
72- -7

Observe that if f is real, then the coefficients are also real.

BUT! In this course we are focused on approximation... not Fourier analysis. There is a big difference in the
perspective!

From approximation theoretical perspective we are approximating a function from the space of trigonometric
N - ~
polynomials IT, (11“) :={ Z ake'kx}. The choice a, = f (k) is the optimal(!) choice for p=2. In some cases
k=-N

we need to choose different approximating trigonometric polynomials of degree N (e.g. approximation for
p#2).

Now let’s try to say something about the rate of convergence. Here is a typical approximation theoretical result:

the Jackson-type estimate.

Theorem There exists a constant C(r) >0, such that forany f eW,(T), 1< p <o,
By (f), =min|[f =P <C(r)N[f] ., [t =]t

Pelly

Ly(T)

Right now, let us prove the Jackson-type estimate for the special case of p=2
Theorem Let f eW, (T) then

EN(f)z < N_r|f|r,2'
Proof

1. Decay of the Fourier coefficients - By Parseval, forany g €L, (’JI‘)
2 [ 4 2
L,(T) - Z 9 k)‘ )

k=—ow0

lg

we have



Ey(f),=[f-Sy(f.x)

a 2
L(T) :,/ Z ‘f (k)
[k|=N+1

Assume first that f e C"(T). We will show ‘ ( ) (k)‘ . Using the continuity of f as a periodic

function, integration by parts yields

By repeated application of the above

o (f(’))A(k)‘.

f (k)

2. The estimate of the tail

[f () =80 (£, =

\k\Nl

<N K[| (K

[k[=N-+1

2

)|
— N -2r

(f(O)A(k)
=N

£,

2

< N72I’

= Ey(f),=]f(x)=Sy(f.x)|, <N

.

For the general case f €W, (T) we apply a density argument. Let {fj};, f. eC'(T), such that

[t-fil,, =0
This implies
|f-tl, =0, [17-£7] >o.
j—>oo 2 joo
Therefore
[f=8u (P, SHf—f-\ =8 (F)], 8w (F) -84 (1),
<N ] (f‘fj)Hz
<N jf +2Hf—f”2 "lf0
,»w 2

Corollary [Approximation Spaces] Define A” (I_Z(']I‘)) as the space of functions f €L, (T) for which
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Then forany r > «

because for f eW, (T) and N >1
N“EN(f)ZsNrEN(f)2£|f|r’2=Hf(r)

Dirichlet kernel

) '

N oosin((N+1/2)x)
D = ikx — '
() k:z—Ne sin(x/2)
N o i N . I’ ei(2N+l)>< -1 ei(N+1)>< _e_iNx
k;lek —eN (1+e gl ):e N S :eix/z(eix/g_e,ix,z)
~ ei(N+l/2)x _e—i(N+1/2)x ~ sin((N +1/ 2)X)
eix/2 _ e—ix/2 - sin (X / 2)

Convolution over the torus

Convolution with the Dirichlet kernel

0,21 (0= [[ 2 & |1y

This is a special case of
Assignment Let f,geL,(T). Prove that

(i) fxgel,(T).
(i)  Foreach keZ, (f*g) (k)= f(k)§(k).

The problem with the Dirichlet kernel / Fourier series — optimal for p =2 ...not adequate for p =o.Why? The
short answer is {D, } are not the kernels of uniformly bounded operatorson L, , ||D,|,>C,+C,logN .

The origins of the Fourier Series (... which reveal how to generalize it)

The Heat equation over Q< R", t >0,

10



ou
- = AU, n 2
ot Au=S2Y

2
u(x.0)= f (x). =
For Q =T, we have the Laplace operator Lf :=—-Af =—f".

{e”‘x} < k? , eigenvectors < eigenvalues of L .

Lf( ) =—Af ( Zk f(k)e™, vfeC*(T).
For ¢:R —R, even, define ¢(L Zgo( ) )e' .

Spectral representation to solution of the heat equation with boundary condition f , is through semi-group
¢ (u):=e™, t>0.The solution is

a(x =@ (L) (=X (k)e™

Example Let p(u)=1 ,,(u). Then,
k| - .
p(N VL) f (x)=z¢£|N—|j f(k)e™ =S, (f,x).
k
Fejér - The right convolution kernel for p=ow

Def A summability kernel is a sequence {hN} satisfying:

(.)—jh x)dx =1

(ii) E“hN(x)‘dxsc.

-7

(i) Forall 0<& <, lim I |y (x)|dx =0
x\>5
Remark For positive kernels we don’t need (ii)
Theorem for a summability kernel {h} and f eC(T),
f (x)—hy*f(x) - 0.

N —

”f _hN * f”C(’H‘) = max

—T<X<1

Proof Assume x=0. Let £>0. From the uniform continuity of f , there exists 0 <& < 7, such that
x—y|<s=|f(x)-f(y)<e.

e * 1(0)= 1 (0) = [, (O)(F ()~ 1 (0))e

Now

11



ij;hN (t)(f (=)~ (0))dt|< max

f(y)= 1 (01 J ()t

27[ —-0<y<o el
<Ces.
Therefore
b+ £(0)- f (0)f < Ce+2] ], o~ j by (t)]dt — Ce.

=

For x =0, define f(t)=f (t+x). Then
. 1 1
hN*f(o)=5jf(O—y)hN(y)dy=ij(0—y+x)hN(y)dy

1
:ZI f (x—y)hy (y)dy=hy = f(x).
We now apply the first part of the proof for f at 0, observing that H f” =| f|. and that forany &>0, we can

use the same 6 >0 we used for f . Hence, the approximation and convergence are in fact uniform for all x e T
n]

Definition The Fejér kernel of degree N —1 is defined by averaging D,,...,D

1 N-1 1 N-1 n »
Ky(x)=22D,(x)=<2 D e
N n=0 N n=0 k=—n
1 —IX IX
:N(N +(N—1)(e +e )+ )
(K
— l—— eIX
by
K, (X) = i 1_M oo _ 1 sin(Nx/2)
N AN - N sin(x/2)
The partial Fejér series of f is
N A .
oy (f.x) =K *f(x)=> (l—kﬂ) f(k)e™.
k=—N

Let o(t)=1-]t| , for -1<t<1.Then,

o (f,x)=p(N"VL) f(%).

Theorem {K } is a (positive) summability kernel
Proof
1 7 1

ikx 1 T
(|)and(||)ZJ.KN Zkz[ i |jje dx = Zﬂ_J;dx:l.

r —

sin Nx/2
(i) Let 0<d <. Then HK dx—ij x<i_22—ﬁ—>0
N 2\ sin sin(x/2) N sin®(&/2) N

[4zo
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Conclusions
Q) ||f—KN*f||C(T) - 0.

N —

(i) The trigonometric polynomials are dense in C(T).

IANSTA ANTAN
Dirichlet (blue) & Fejérrm(red) kernels for N =20

Fourier Integral

Def f e Ll(]R”),then
f(w):= IRn f (x)e ™ dx :jRn f(x)e " ™"dx.

A rigorous method to define the Fourier integral is to first define it for Schwartz functions...
Definition ¢ €& is in the Schwartz class if it isin C” (]R”) and forany a €Z?, |a|=m and k>0, there

exists C,, such that

sup|o g ()| (L+[x]) <C,

x\z

Example Gaussians are the pro-typical example for Schwartz functions, e.g. ¢(x) —¢l

We’ll see examples where the “Schwartz is with us” soon...and then we will need the following
Assignment Show that for any ¢ € &

(i) 0gel,(R"), forany O<p<ow, aeZ!.

(i) qze & (Hint: you may prove the case n=1. Use integration by parts of f f (x)e“Wde ).

Properties of the Fourier integral:
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i viel, |f| <If],-

ii. For f el (R), f is uniformly continuous.

Proof For £ >0, let M >0 such that

I n|f|<£.
R"\[-M,M] 4

Let 6 € R", be sufficiently small, such that

e <=2 wxe[-M,M]
e <

Then, forany we R"

f(w+5 ‘ U "WX g X 1 ()dx‘

<Jule #If )éx
g P i LECO L T s IO

< max ‘e“‘” —1H| f, +2%<¢
xe[-M ,M]" 4

i, f(e—a) (w) :.[Rn f (x—a)e’iwxdxﬂ’w f(y)e™ “dy =e™f (w)

iv.  For a Schwartz function the following calculations can be applied because f,f'eL, and f decays to

zero at too.
( f ,)A (W) _ J‘ f ,(X)e—iwxdx
__ g i |WJ. —iwxdX
_ iWI f(x)e ™ dx = iwf (w)
Examples:
1 i [t *IW
] —|wx _ € _l 1- e
I f(x):l[o,l( ) Then, f( ) J. dx = —IW‘ —iw iw

0

ii.  f(x)=sinc(x)= sm(;zx) .Noticethat f ¢L,, feL,. Wewill see later f(W):l[_”ﬂ](W).
i ,

jii.  Gaussians f(x)=e"", f(w):\/ze““.
o

14



Proof Consider the function g(y)= J:w e Ydx, y e R. By completing the squares

Can be extended to entire functions that agree on R, we can set y =—iw and then

f _ s _ © —ax? —iwxd _ Z U.
(w)=g(-iw) Loe e " dx \/;e

Convolution on R"
frg(x)=], F(x=y)g(y)dy.

Simple exercise If=al, <] f],l9],-
Theorem For f,ge Ll(]R”), (f *g)A(W): f(w)g‘(w), weR".

Proof
(f *g)A(W):LRn f >l<g(x)e“wxdx=J'We“”“dxf‘«‘n f(x-y)g(y)dy

)dt.[v f(x—y)e ™ dx= Ln g(y)e™ f (w)dy
(

Examples: B-splines N, (x) =1, (x)

0 x<0
. LN 1 . min(x) it X 0<x<1
= * = — = =
2(X) 1 l(X) .(l;llovl](x ) max('[m) 2—-Xx 1<x<2
0 X>2
N N N

3

We define N, := N, *N,. Therefore, (NV)A(W):Ll_i\?V_ ] :

15



Inverse Fourier For g € L, define

1 — IWXd
Theorem For g &
1 IWX n
¢(X)=(27;)" J'Rn¢( )e"dw, vxeR".

Theorem
A. For f,hes <f,h>=(2ﬁ)‘"<f,ﬁ>.

B. For f €5, we have H H ||f||

2

e “ . By the previous theorem g, (W)= e . We now compute

Proof (sketch for n=1) Let g, (x)= 2\/1_

/104
J‘ x)e |wdeJ'h y)e.wydydw
j—)(.[g e~ de)dydx

When we take limit ¢ — 0"
G, (w) f (w)h (wdw =27[ t (x)(h(y)a, (x~y)dy)dx

_[f(w)ﬁ(w)dw _27zj (x)h (x)dx

Definition Let f e LZ(IR{“) . We define f = I!imgbk, where forall 1<k <o, ¢, €S and ¢, = fin L,
Why is this well-defined? If {¢,} is a Cauchy sequence in L,, then by the previous theorem, so is {¢, } . Since

L, is complete there exists a limit which we define as f
Corollary We can extend the Fourier transform and its inverse to L, with A7 *f = f .

Example The sinc function. f (w) =1 . .(w)... whatis f?

16



1 T iwx _i” iwx _ieiWX” —ieiﬂx_e_iﬂx—smﬂ.x
f(x)_gif(w)e dw_zﬂ_fﬁe dw—zﬂ x| “2r x x|

EV L Y,

The Laplace operator, the Heat equation and Fourier transform

Q=1R", Laplace operator
n 2
L=—A==- o .

2
k=1 an

On R we have that L(e‘WX) =w’e"™, YweR. The spectrum of the operator is the whole real line

Lf (x) =—Af (x) = —i J. (f") e"dw= i J. wf (w)e™dw,  vf eW?(R).

—o0

L () == (x) = Sk F (K)e™ Vi eWZ(T).

The Heat equation
a_
ot

u(x,0)=f(x).

The Gaussian (heat) Kernels satisfy the Heat equation

Au,

. 1 —\x\2/4t .
p(X):= 47zt)”’ze : IRH p (x)dx =1, t>0.

—

Semi-group p,*p, =P, t,$>0.

Theorem If f is continuous and bounded then
u(x,t)=p,* f(x),
solves the Heat equation with initial conditions f .

Sketch Easy to see



Maximal function
M, f(x):= stug)‘u(x,t)‘ :stu(!o‘ p* F(X)].

Typical question If we know that f e L, (R” ) 0 < p <o, what can we say about the solution? In other words,

can we bound |M,, f ||p ? This topic is discussed in the “Function Space Theory” course.

Spectral representation to solution of the Heat equation with boundary condition f
Oon R u(x,t)=e"f(x =i_|.e‘“”2f w)e"*dw,

On T u(x,t)=e"f(x Ze""z f(k)e™ .

We shall later in the course encounter approximation from shift-invariant spaces of the sinc function.

sinc(x) = sin ) ,osinc”(w) =1, ,(w).

TX

The approximation we shall use is equivalent to the following: Let ¢(u) =1 (u). Forany h>0, we apply

oML ) f (x :217[ ) f (w)e™dw
1 i iwx
- hjl,[f( )" dw,

Approximation using uniform piecewise constants (numerical integration)

The B-Spline of order one (degree zero, smoothness -1) N, (x)= Loy (x).
Let Q=R or Q=[a,b]. We approximate from the space

{ch L (hx— k)}:{éckl[khv(kﬂ)h](x)}.

keZ

Theorem For f eW (R), 1< p<oo,
E( f S ( Nl)h)LpR) = geisr(]Il)h ” f- g”Lp(\i) < h| f |W,}(<)

Proof First assume f € C*(R)NW, (R). Let’s take the interval | kh,(k+1)h]. Then, for p=co

HORIGE f(u).

So select ¢, := f (kh) and you get the theorem for p = by using

= £ (kh)N, (h'x—k).

keZ

X

If'(u)du

kh

<h sup
kh<u<(k+1)h

18



For 1< p <o we do something similar

(k+2)h P
\f(x)—f(kh)\ps[ f’(u)‘du} , x e[ kh,(k+1)h].

kh

Then
(k+D)h (k+D)h P
j |1 (x) f(kh)|pdx£h[ f’(u)|du]
kh
p 1
P 1+ —==1+p|1l-—
< h( Ly ([kh(k+2)h]) ”1” ([0, (ks h])) p’ p( pj
=hh"? ”f ” o([kh (k+1)h]) P P
_hp”f ” o[k (kD)) *
Therefore, with g(x):=>" f (kh)N, (h™x—k), we get
k k+1h
||f—g||2:“f(x ‘ dx = Z I ‘f _f kh‘ dX<th”f” o([Kkn,( k+1h])_hp p’

Now assume f eW;(RR), 1< p <co. There exist sequences { f }, f, eC*(R)NW,(R), {g,}. 9, eS(Nl)h,
such that || f — fk”w,;(R) —0and I, - gk||Lp(R) <hlf, |W;(R) . This gives

IF=aill, <l =1ll, + e = aill,

<[t =full, +hlfdl, 2 0T,

LP k—w

Modulus of smoothness

Def The difference operator A; . For heR" we define A, (f,x)= f (x+h)— f (x). For general r >1 we
define

AL(f,x):Aho---Ah(f,x):i{;j(—l)r_k f (x+kh).

k=0
r

Remarks

1. For Q< R", we in fact modify to Aj (f,x)=A](f,x Q), where A](f,x)=0, in the case
[x,x+rh]z Q. Sofor Q=[a,b], A;(f,x)=0 on [b—rh,b], for any function.

2. Asan operator on L, (Q) 1< p<oo, we have that |A; <2". Assume Q=R", then

p*)

toll, <3 ¢ o, - i1, =211,

Def The modulus of smoothness of order r of a function f e L, (Q) 0< p<w, at the parameter t >0

19



o (f,t) =sup

|h|<t

Ar(f, X)HLP(Q) :

For r =1 the modulus of smoothness is called the modulus of continuity.

0 x<0

Example non continuous function. Let Q=[-1,1]. f(x)= {1 o<y’
<X

Let’s compute o, ( f,t)

Lp([-11])*
0 —-1<x<-h
A, (f,x)= 1 ~h<x<0
0 0<x<1
For p=oo we get o, ( f,t) L sup||A f|| (g =1
For p=oo weget e (f,t) (L sup||A f|| () =t"?,
0 -1<x<-2h
) B B 1 —2h<x<-h
AL (F.x)=A, (A f,x)= 1 hex<0
0 0<x<1

We get @, (1) (= (2t)"
In general, we’ll get o, (f.t), ., <C(r,p)t t?

Quick jump into the “future” (Generalized Lipschitz / Besov smoothness)... for a <1/7, r=| a |+1,

|f

. =suptao, (f,t) <supte (f,t) <csupt’ ™ <o,
0 ) T o«=2

We then say that f has « (weak-type) smoothness. Observe that in this example « can be arbitrarily large as
long as the integration takes place with 7 sufficiently small.

Properties

l.Forl<p<ow, a)r(f:t)pgzr”f”L (©)

2. o (f,t)  isnon-decreasing in t
3. For 1< p <o the sub-linearity property

fx

A;(f+g,x)‘

1 (9.%),
gives
o, (f +g,t)p <o, ( f ,t)p + o, (g,t)p.

20



4. For N>1, o, (f,Nt) <N'o (f,t) , 1<p<oo.
Proof For the proof, we need this property (assignment)

N-1 N-1

ALy (%) Z D A (fox+kh+-+kh),  vxeQ,st [x,x+Nhr]cQ.

k=0 k=0

Let’s see (*) for the case r =1. We assume that [x,x+Nh] < Q, otherwise A, (f,x)=0.

A (F,Xx)=

f (x+Nh)-f(x)
= f (x+Nh)— f (x+(N=1)h)+ f (x+(N-1)h)—---+ f (x+h) - f (x)

For k:=(k,,....k, ), let
Q(k):={xeQ:[x,x+kh+--+kh+rh]cQ}.
Then,

p

dx

A;(t-+&h+-~+kmﬂm():jqk

o

I
o

(rJ 1)) £ (x+kh+-+kh+ jh)

[

(S

i
p

dy

-

I
2
=
M-

1l
o

j 1) £ (y+jh)

(O

(S

i

y dy =
Then, assuming (*) for any he R", |h|<t

N -

,_\

N

LN

A (1), =
Nh p

AVAHf;+&h+m+kmmp
k =
N =

=

1=

IA
Z
l—‘O
= o

A ( H<Na)(ft).

k=0

Taking supremum over all heR", |h|<t, gives a)r( Nt) <N, (f.t) .

=
o

It is easy to see that for 0 < p <1, the same proof yields o, ( f, Nt)p <N, (f ,t)p .

5. From (4) we getfor 1< p<w,
o (f.2) <(2+1) @ (f.1),  A>0

pnmf@(LiﬂpSq(f{i+uﬂpng+quAfi%s(l+Qﬂq(t0V

Theorem [connection between Sobolev and modulus] For g eW; (Q) 1< p <o, we have that

21
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a)r(g,t)Lp(Q)sC(r,n)t’|g|W;(Q), vt>0.

Proof for Q=R . Recall the B-Splines, N, =1 . Ingeneral, N, =N, *N, :_[Rn N, (x—t)N,(t)dt.

[o.]

0.2}

NZ N3 N4
e Properties:
o Orderr
o Support [0,r]"
o Piecewise polynomial of degree r —1 with breakpoints (knots) at the integers
o Smoothness r—2, thus in Sobolev Wpr‘l.

o jRn N, (x)dx =1
o Tensor-product in multivariate case

Let’s see how we get the property of J-]R” N, (x)dx=1.Let f,ge Ll(R”) then

jRn f *g(x)dx:LRn f 9

Here, we use the fact that for h>0, A’ (f,x)=A; (f,x—rh). So W.L.G, forany t >0, we can work with
O<h<t. Define N, (x,h):=h"N,(h”x), h>0.Let g eC'(R). Then

ha, (g.x)=h"(g(x+h)-g(x))

=h™ I g'(u)du

:IRg’(x+u)Nl(u,h)du
More generally, g eC" (R)
h‘rA[](g,x):_[]Rg(“)(XJru)Nr (u,h)du

To see that we apply induction

22



80 (8. =1 (82 (0. )07 (0.0
= h_l(j‘ g" Y (x+h+u)N,, (u,h)du —I‘ g(r‘l)(x+u)Nr_l(u,h)du)

Xx+h o

= [ ] 6" (vu)N, (uh)dudy

[ (hl*fg«xwu)ﬂdu
TNH(“'“) [I 9“’(V+U)Nl(v—x,h)dvjdu
WIN [Ig X+ )N, (y- Uh)dyjd

:T 9" (x+y) U er(u,h)Nl(y—u,h)dquy

Now, let’s see the proof for p=1. Let 0<h<t

J.

Ar(9,x)

x+u)

uh‘du”g ‘

St |g|W1r(«)

h)|dudx

R

For general 1< p <o we need Minkowski’s inequality. It says that for measurable non-negative functions ¢, p

(1o ptn)a) o] <o) (], ptx ) e o
[Lo(y)p(-y)

Or written differently

<[,e]e(-y)

dy

Lp(A)

Using it we have
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AL(g,x)‘pdxﬁhprL(J'_ Nr(u,h)‘du)pdx

ShW(LRNrOLhmmU“HHQmM@dUJp
<n ([,

p
du)
Lp(R)
<tP

g“)(x+u)‘

J.

Nr(u,h)‘Hg(r)

p

L(%)

g(f)

=t” |g|v?/g(\i)'

For a general function g eW, (IR) we use the density of C"(R)NW, (R) in W, (R).

r-1
Corollary Forany PelIl ,, P(x)=> ax",

k=0
h’rA[](P,x):LR P (x+u)N, (u,h)du=0= A (P,x)=0= o (P,t) =0
Marchaud inequalities

We know that forany 1<k <r, 1< p<o,

o (f,t) =sup

|h|<t

A;(f)Hp =sup|[Aj*Af ()] <2 *sup|ak ()]

||t P ||t P

=2"w, (f ,t)p )

The direct inverse cannot be true. If we take Q=[a,b] and a polynomial P €IT,, , then &, (P,t) =0, but we

don’t necessarily have @, (P,t)p =0 for0<k<r.

Theorem. Forany 1<k <r,1<p<o,

~0,(f,s)
On Q=R", o (f.1) sctkj ——>ds, vt>0.
p t S
_ [ e (f5) |f] b-a
On Q—[a,b], a)k(f,t)péct Ut = pds+(b—apk , 0<tST.

Proof of the case QQ=R". We prove first for r =k +1 and then apply induction. Using induction on k , we get
that

C1-27%(x+1)f

Qu (x): x—1

ell, ;.

This is by
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Xx+1 x+1

I LR N R Rl G TS
Qk(x)_ x—1 x—1 _Ql(x)—l_TQk—l(X)

This gives
Q (X)(x-1)=1-2"(x+1)" = Q (x)(x—1)" = (x-1) =27 (x* —1)k
= (x-1)" =2 (x2 -1)" +Q (x)(x-1)"
With T, (f,x):= f (x+h) we have

(T =1) =2 (T = 1) +Q(T)(T, - 1)

Itis evident that |Q, (T, )|, _, <M (k). Therefore, with |h|<t

p—bp
‘p

| Al
AS

vt <27 |ag, £ + M|

<2 ( “Jlak, pr+M\ Al §

)™

,

Ak+l f

2'h

2“\

‘ 4 27km

A5, fl,

2 "0, (f.2') +2 )

Soifwelet m—

Using induction
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o (f.3),

o (f.1), <ct‘[’ —ds

<ctj s““dj Mdu

f,u)

£ctkjt — P duj s"*ds

=0, ,(f,u

— ) ( r—k _tr—k)du

o
SCtkI 5

a)l(fu w r+l(fu)
(

=ct .L

sctkI

———Pdu- ctj ® du
fu)

@y

—— P du.

The K-functional

For two Banach spaces X, c X, the corresponding K-functional

K.t X0 X,)i= inf [, +t[f],

f=fy+f;

K(f.t,L,(Q).W,(Q))=inf ||f—g|| (e ISP

P g eW

Theorem [Equivalence of K-functional and modulus] For ‘nice domains’ Q c R", 1< p<ow, r >1, there
exist C,,C, >0, such that forany t >0

1Kr(f,t')p <o, (1), SCZKr(f,tr)p.

It is easy to show that C, depends only on r, but the constant C, further depends on the geometry of Q.
Proof of the easy direction Let f e L (Q) and let g eW, (Q). Then

w,(f ,t)p <w,(f —g,t)p +o, (g,'[)p
<2' ”f N g”Lp(Q) +C(r)tr |g|w;(g)

<C(N)(If =0l oy +t 8l )
Taking infimum over all possible g eW,; (Q) we obtain the right-hand side.

Applications of K-functionals
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The K-functional appears in many applications such as denoising. It provides a balance between approximation
and smoothness.

1. Regularized Least Squares

g_zrzlkiNr:(.k)” f gl +tHg(z)Hz .

2. Denoising with Total Variation minimization over a bounded domain Q < R"

min 1f -l +tlgl,,

geWz1 Q

Lip spaces

Def For a domain Q< R" and 0<a <1, we shall say that f e Lip(a)=Lip(a,x), if there exists M >0,
such that |f (x)—f (y)| <M |x-y|", forall x,y e Q. We shall denote |f|Lip(a) by the infimum over all M

satisfying the condition. Observe that we can replace the condition by
A (F. )| <M, VheR "= (f,t) <Mt“=t o (f,t) <M.
For 1< p <o, we can generalize by

|f|Lip(a,p) = stljg)t*"‘a)l( f.t), .

Example For f(x)=x, 0<a<l, felip(a), f ¢Lip(B) ., f>a .

Proof

(i) Assume f eLip(B), B>a.Thenfor 0<x<1,
X“-0"=x“<M (x—O)’B = Mx” = x*# <M = contradiction
(i) We use the inequality (a+b)” <a“+b“ . Assume w.l.g x>y , we set a=y,b=x—y and obtain

a

X“ <y +(x-y) = x* -y <(x-y)

However, forany 0<a <1, f(x)=x“eLip(11), because
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|

f'(x)|dx=1=f'el,

= o (1.1) st|f| =t ], =t

= || =5tl>1(§)t_1a’1(f't)131-

Lip(L1)
Generalized Lip are a special case of Besov spaces. Forany « >0, let r:= L“J +1,

|f

. =supt™w, (f,t)

P t>0 P

Linear approximation of Lip functions

Theorem: Let f e Lip(«). Approximation with piecewise constants over uniform knots gives
Ey ( f )Lw([o,l]) = inf)llN ” f _¢||ao <CN™ | f |Lip(a) '

#eS(N,
Proof [Classic technique] Recall that for g  C*[0,1], we constructed ¢, € S(Nl)”N , such that
Ev(9) < Hg -, Hm <N7[g|, . Therefore, for any g eC*[0,1]
[ =il <t -al. +]o-4].
<[t -gl,+N"[g],.-
For a sequence {g, }, with K,(f,N*) = i!im{”f —g . + N‘1|gk|1]w}, we get

Hf—%kwsw—gmw+N4m¢m;;Kth4L.

Using the equivalence of the modulus of smoothness and K-functional,

a(fLsKmLN4L
<Ca(f,N?)
<CN~“|f|

Lip(a)

Inverse Theorem: Assume E (f) <MN™, VYN >1.Then, f eLip(«).

Intuition 0<y <x<1.Let x=y+h, (N +1)7l£h£ N If x,ye[kN’l,(k+1)N’1], then with the

approximation constant approximation ¢, in that interval,

£ ()= (y)[<[f () -c+|f (y)-c
<2MN™
<2M|x-y[*
28



However, since they might not fall in the same interval, there is a “mixing” argument.

So linear approximation is kind of limited when « is small. The problem is that we are not spending enough
‘budget’ in the vicinity of zero.

First glimpse to Adaptive / Nonlinear / Sparse approximation

Approximation using free-knot splines / non-uniform piecewise constants in L ([Ol])

geXy

N-1
N :Z{Z;le[t,t. ) :T:{tj}, 0=t, <t <--- <ty :1} . oy(f), =inf | f —g||p.

Var(f)::sgp{Z‘f(tH)—f(tj)‘} .
If f' existsa.e., Var(f)=||f’||l . Why?

h ‘f((k+1)h)—f(kh)‘.

f’(x)\dx=mzk:h -

0
Now, create a partition where

Var ()
Var[t . —_—

jotj+

](f)s

For the example f (x) =Xx", O0<a <1, this is equivalent to choosing

IA
=
|
[

Ll f’=1:>j:j”l f'(u)du =%, 0<j

- \Va
This equidistant partition of the range is achieved by choosing t; = (ﬁj :

1 —

161+

0 0.2 04 06 08
If &; is the median value in [tj,tj+1],then
var, J(f) Var (f)

‘f(x)—aj‘g ”’2* < N ,VXE[tj,tM].
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This gives a free knot piecewise constant g € Z,, with

Var(f).

f— <
R

Recall that earlier on, we promised that ‘integration’ of differences will be meaningful. Indeed, for the family
f (x)=x", 0<a <1, we see the smoothness

| f ||_ip(1,1) - Stl;lft_la)l( f ’t)l =1,

comes into play to show the advantage of nonlinear approximation over linear approximation

fe Lip(a,oo), fe Lip(l,l),

E (f). ~N“, o, (f),~N™

Jackson Theorem for trigonometric polynomials

Denote E, (f) = inf |f P (x)- Here, we shall assume we are approximating real functions. This implies

p = Pelly
we can use real trigonometric polynomials. Our constructive approximation will in fact guarantee that.

Theorem For a periodic function f eL (T), 1< p<co andany r>1,

EN(f)psC(r)a)r(f,N‘l)

p

Corollary for f eW; (T) we obtain
Ey (), <C(r)N"[f]

W (T) *

Corollary Let f: T — R be piecewise algebraic polynomial of degree r —1 with the number of breakpoints
#break . Then, for large enough N

Ev(f), SCa),(f,N—l)p gC(p,r,||f||w)(

#break jﬂ P
N .

Proof of the Jackson theorem Recall the Fejér kernel of degree m—1

K, (t)—l[wjz.

- m{ sin(t/2)

We construct the approximating trigonometric polynomial using the Jackson kernel

Io, (V)= 2y, (%T [ 3ns (Ddt=1, mz=PJ+1.

r

It is a positive, symmetric kernel, trigonometric polynomial of degree <N because
30



r(m—l):rLﬂJsrﬁ: N .

r r

Also, since it is an even trigonometric polynomial, we can write it as
N
Jyur(x)=>"a, cos(kx).
k=0

Based on a theorem we proved (for domains of finite volume), if f eL (T), 1< p<co,then f el (T).

Observe that for any trigonometric polynomial P €I1, , we have f =P Il . Indeed, if P(x Z ae" , then
k=

for [k|> N
(f*P) (k)= f (k)P(k)=0.

=0

The actual approximating polynomial is of a more sophisticated form of convolution
Sue (F.0):=[ [ (FD)AT(F.0)+ £ ()] 3y, (D)t
Notice that Lr(—f (x)+ f(x))Jy, (t)dt=0. This means that S, (f,x) is a combination of terms

[ f(x+kt)cos(It)dt, k=1...r, 1=0,..,N.
We want to show that S, (f,x) eIl (T). Now f(x+kt) asa function of t has period 27 /k . This means
that Lr f (x+kt)cos(It)dt =0, unless k divides I. To see this let g(t) have period 27z/k . Then forany | e Z

2r 2z+27lK 20 on 2012
Jo(t)etdt="[ g(t)e"dt=[g(y+2x/k)e" My = [g(y)e" My =e ¥ [g(y)e"dy
0 27lk 0 0 0

27l 2z )
—e k =1 or Ig(y)e""dyzo
0
Thus, we get for k that divides |

X+ﬁk

j f(x+kt)cos(|t)dt_Ex'|;k cos(%(y—x)}dy

—!f cos( x)]dy

{1l rom( oot
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So S, (f,x) is composed of trigonometric polynomial terms of degree < N . Now we use the following:
() o (f1), = [f Mj g(Nt+1)rw,(f,ij
p N p

(if) Lemma 7.2.1 in Constructive Approximation shows that J'thN‘r (t)dt<C(r) N™*, k=0,...,2r-2.
0

Therefore
S ()= f], =

J

(D™ AL (£ )+ ()= 1)), (1)

AL, 3y, (D)t

p

<

Besov Spaces

Continuous definition

Let @>0, 0<q, p<oo. Let r>| & |+1. The Besov space By (L, (€2)) is the collection of functions
f eL, () for which

‘e, (ft qﬂﬂq, 0<q<oo,
[tre (0,3

supt‘“a)r(f,t)p, q = oo

t>0

is finite. The norm is

o) =l o

5(Q)

Theorem The space B (Lp (Q)) does not depend on the choice of r>| & |+1.
Proof For Q=R", 1<q<o.Letr, >, 2LaJ+1. We already know that for 1< p<o,andany t >0,
o, (f ,t)p <2"hg, (f ,t)p (for 0 < p <1 with a different constant), so

J.:[t_aa)rz ( f ’t)p]q % = C.[ow[t_awﬁ ( f ’t)pj|q % '

The other direction requires the Marchaud inequality
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q
. adt | .= @ (F8), [t
Io[ (ft)} t Co{t It ghtt ds T
Denote 6:=r,—a >0, and ¢(s):=s"a, (f ,s)p. Then, we can apply the Hardy inequality [DL Theorem 2.3.1]
for 1< q <, to the right-hand side

e @a(£8), Tt ol ,re(s) Tt
[ e e ]

1 ¢or., q dt
< — | |telt)| —
Hardy eq 0 I: ¢( ) t
1 a dt

:(E—a)q Jj[tﬁ tho, (1Y) } t
o g a dt
[ [t (1.1),] -

In certain cases, we will ask for the condition r > |_aj +1. Otherwise, the space might be ‘trivial’®
Theorem (univariate case) For r<a, 1< p<oo, we get that B (L, (Q))=1I1,, if @ =[a,b] and

By (L, (Q))={0} if Q=R.

Proof (sketch, see Proposition 2.7.1in CA) If f e B (Lp (Q)) then t™“a, ( f ,t)p <C, 0<t<1.This

implies that t™" e, ( f ,t)p <Ct* I_T;O’ where o =r +¢. The condition t”, ( f ,t)p t—zo, in turn gives that

f"=0andso fell,

Theorem For a bounded domain we can equivalently integrate the semi-norm on [0,1]. That is,

) U[ o, (1) Tcitj , 0<q<oo,

supt™“a, (1), q = oo.

0<t<1

B3 (Lo ()

Proof If Q is bounded, then we have o, ( f,t)_ =const for t >diam(<2). Therefore for 1/2<t <co,

o, ( f ,1/2)p Sa)r(f,t)p <o, ( f ,diam(Q))p :a)r(f,ZdiaTm(Q)j £(1+2diam(Q))r o, (f,1/2)p.

This gives
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dt
t

o, (f.1),]

he—3
1

<C(w (11/2),) thaldt
1
<C(w (f172),)

(an)jz[ o (1), &

Lemma For any domain taking the integral over [0,1] gives a quasi-norm equivalent to | f|_,
q

Proof We replace the integral over [1,00] by
j[tawr(f,t)p]‘%sc||f||‘; et
1 1

~c(aa)| [}

1 » ¢ dt 1/q
L e M ![t o (0, 5] -

Theorem B (L, )< B (L,) if ¢, <q.

Therefore

Proof (g, =0,) We may use r, =| o, [+1>| a, |+1 to equivalently define B (Lp). This gives

IIfIIBgz(Lp)sc(||f||p+U [toa, (1), ] ctltj j
sci ([ a0, 4]

<C ” f ”Bgl(Lp)

Theorem Wp’“ng‘(Lp), VYa<m,1l<p<ow, 0<q<oo.

(Lp(@)

Proof Let g eW."(Q). This implies g e L, (€2). We have that r:=| & |+1<m. Itis sufficient to take the

integral over [0,1].
adt ., dt
o), ] T=c]levlal, [T

<Clg[', jt(r’“)q’ldt
0

O e
1
i

Q

Discretization of the Besov semi-norm
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Theorem One has the following equivalent form of the Besov semi-norm

(E[zatr2),] ] o<acw

B () ") . )
sup2“o, ( f,2 )p, q=oc0.

keZ

Proof Define p(t):=t“w, (f,t) . Thenwe claim that for t e[ 2,2 |, k e Z, we have

2" p(2%)<p(t)<29p(27).
To see that, we use the following properties:

0) co,(f,t)p is non-decreasing
(i) a)r(f,Nt)p <N'o,(f ,t)p

The left-hand side
27p(2")=2"w,(1.2%) =270, (f,2277)

p
<2720 (1,247) <20 (1.1), <t o (f.1),
(i) (M
The right-hand side
to, (f.1),<t7o,(f,27%) <20 (f27) <279p(2)
0
This gives usfor 0<qg<o, KeZ

j(p(t)q dt_ de zf (e, (1.0), )‘*%{zka (1.2,

2k1

Discretization over cubes

Definition [Dyadic cubes] Let D:={D, : k e Z}
D, :={Q=2""[m,,m, +1]x---x[m,,m +1] :meZ"}.
Observe that Qe D, =[Q|=2""

For nonlinear/adaptive/sparse approximation in L (Q) , Q< R", itis useful to use the special cases of Besov
spaces

B =B (L, (Q)),

N |

SR
+

S |-

Theorem Q=R". We have the equivalence

35



| f

o ~(Z(2K“wr(f,2'k ),)’jm ~[Z(|Q|“’“ wr(f.Q),)’}m ,

keZ QeD

o, (f,Q) =sup

heR"

A 'Q")”LT(Q) '

The following theorem generalizes what we showed for the univariate case

Theorem Let f(x)=1,(x), Qc[0,1]', a domain with smooth boundary. Then f €B;, a<1/7.

Proof For @ =[0,1]", with 1(Q) denoting the level of the cube Q , we may take the sum over k >0

¢~( Z:(pr“a(tQLYTi

QeD,I(Q)20

|f

For any Q, we have that &, (f,Q) =0, if 0QNQ =T . Otherwise, if 1(Q)=k,

T

It
o (1.Q), <CJ|f]_, sc(ij)l =C|Q[" =c2™".
Therefore,
[t <C Y (o "o (1.Q),)
1(Q)=0
< Ci(zkaz-k"’f)T #{Q:1(Q)=k, QNaQ = 2}
k=0
~CY 2 {Q:1(Q) =k, QN2 = 2]
k=0
We argue that

#{Q:1(Q) =k, Qnafz;t@}sc(fz)zk(”‘”. *)
This implies that if o <1/7

|f

;“ < Ci oklarn) ok(nD) _ Ci oklar-) _ o
i k=0 k=0

Let’s get back to the estimate (*). Let use show a picture
argument for Q [0,1]2. There is a finite number of

points where the gradient of the boundary of the domain
is aligned with one of the main axes. Between these

points, the boundary segments are monotone in X;

and X,, and therefore can only intersect at most 2 x 2
dyadic cubes.
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m]
Note For the theory of geometric approximation in higher dimensions (Machine Learning!), we can generalize
to anisotropic partitions of trees over [0,1]n (replacing dyadic cubes!)

| f

e[ Zleraca))]

Qe7

Iteration 1

Qe7

Approximation from Shift-invariant spaces

Applied problem We want to re-sample an image: change its size or rotate it.

Input Q=R", f (k),k eZ" (although the application is image processing and the boundaries need a special
treatment)

Output Given a generating function 4, we look for coefficients {¢z, } such that

f(X)~ Y ad(x-k), xeR".
k
Application Example I — Image rotation Once we find {ak} , we can apply an affine transformation A by

sampling
f.(J)=1(A"))~ Y g (Atj-k).
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cubic FMOMS SNR = 17.6dB  cubic spline SNR = 22.2dB  cubic O-MOMS SNR = 26dB

Fig. 4 Companson between three interpolation methods of same order | L = ), same support, and of decreasing asymptotic constant: 15 rotations of the top
images by an angle of 277 / 15 . The smaller the asymptotic constant, the better the quality. Remarks: The interpolation condition of the cubic I-MOMS 1s detrimental
to accuracy; the cubic spline is the smoothest cubic MOMS, but does not provide the highest quality: the cubic O-MOMS minimizes the asymptotic constant among
cubic MOMS and gives the best results. even though it is not smooth.

*T. Blu, P. Thévenaz and M. Unser, MOMS: maximal-order interpolation of minimal support, IEEE
transactions on image processing 10 (2001), 1069-1080.

Application Example 2 - Image resizing. When we create a smaller version of an image, one can argue that
we can simply sub-sample pixels at the correct rate. This leads to bad visual quality.

Simple example — Think of an image of a chess-board, with pattern of black and white at the pixel level. In
zoom out it visually looks gray. Then, sub-sample every 4 pixels by the top left, to create a smaller image. You
will arbitrarily get a black or white image instead of a gray image.

=]
ISO 300 SWOP B ISO 300 SWOP




(a) Resizing by simple subsampling (b) Resizing via ‘ideal’ low-pass (followed by subsampling)

Definition For any k e Z" we denote the linear shift operator S, by S, (f):=f(-—k).

Definition Let V' be a closed subspace of L (R” ) , 1< p<oo.Wesaythat V isashift invariant (SI) space if
it is invariant under the operators {Sk| ke Z”} . We say that a set @ generates V if

V=S5(D):= %{¢(-—k)| pecd ke Z“} . We say that V is a finite shift invariant (FSI) space, if there exists
a finite generating set @, |®|=m, such that V =S(®). In such a case we say that V is of length <m. We
denote len(V):=min {|q>| | V= s(cp)} . An Sl space V is called a principal shift invariant (PSI) space if
len(V)=1.

To approximate functions with arbitrary precision one uses dilates of shift invariant spaces. For a given
subspace V and h >0 we denote by v" the dilated space

V'={4(-/h) | peV}.

Assignment If S (¢) is a PSI space, then for j>0, S (¢)2’j is a FSI space of length 2V, That is, as an integer
shift invariant space, it is generated by at least 2" generators.

Properties of ‘good’ generators

Smoothness

Refinability (to be defined later. Only required for certain applications)
Localization properties - compact support or fast decay
Approximation order

PwnE

Def We say that V =S (CD) or @ provide approximation order r if for any g eW, (R”) and h>0 we have
E(g,s(cp)“)p <ch'lgl, ,.
Observe that this automatically gives forany f L, (R")
E(f,S(®)') <Ca,(f,h)

p p

We already proved the following Jackson-type estimate for piecewise constant approximation

Theorem E(g,S(Nl)h)L “ SCh|9|W;(§)-

pl!

In the multivariate case the B-spline N, r >1 is defined as the ‘tensor-product’ of the one-dimensional B-

spline Nr,
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Bivariate N,

We want to show a generalized Jackson-type estimate for r 21, n>1,

E(0:S(N)"), (o = O lohugery

")

To this end, we construct appropriate dual(s) to the multivariate B-spline that have sufficient decay and allow
polynomial reproduction.

Polynomial reproduction
It is obvious that for r =1

a:ZaNl(x—k), vxeR,aeR (orae).
k

It is also easy to see that for r =2 and any linear function f (x) =ax+b, we have

ax+b=>"(ak+b)N,(x+1-k).

The next theorem says that the shifts of the B-splines reproduce polynomials

Theorem [CA chapter 4] For any r > 1, there exist linear functionals {gk} on Hr_l(]R), with support on
[k,k+r], such that for any univariate polynomial P eIl ,(R),

P(x)=>.9,(P)N,(x-k).

keZ

Theorem Suppose that for r >1 and a bounded ¢: R — R, with sufficiently fast decay, there exist linear
functionals {§, } on I, (R), such that for any univariate polynomial Pe I, (R),

P(x)= 2.0 (P)o(x-k).

keZ
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n

Then for ¢(x):=] [ (), there exist linear functionals {g, }, such that forany P <11, , (R")

P(x)= 0, (P9(x k).

kez"

n
Proof Let X* :=1_[Xf‘i ,with @ <r-1. Since ¢ reproduces univariate polynomials, for 1<i<n,

: X :;gki(xf“)w(xi—ki).

This gives

where we define

0. )={ T, ()|

Now, forany PeIl_,(R"), P(x)= ) a_ x“, we define
r-1 (3

e
g (P)=>a,g, (x“).

|a|<r

This gives

kZ//: g, (P)¢(x—k):k§n [Z‘raagk (Xa)]¢(x_k)
=Y a, > g (x)p(x—k)

lal<r  kez"

=Y a,x“ =P(x).

|a|<r

Assume that for a generator ¢, there exists a fast decaying dual ¢7 , reproducing polynomials. That is,

P(x)=> g, (P)g(x-k), with gk(P)=<P,¢(-—k)>.

kez"

This leads to the construction of the reproducing kernel:

K(xy)= 2 g(y=k)g(x—k).

kez"
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Therefore,
P(x):fw K(x y)P(y)dy
We then define
K, (xy)=h"K (h’lx, h’ly), h>0,
and
f(x):= IRH K, (x,y) f(y)dy.
Observe that {T,}, . are linear operators.

Assignment Prove T, f (x)eS (¢)h, h>0.

Theorem Assume a kernel operator K (x, y) satisfies for r > 1

M P(X)=[ K(xy)P(y)dy , vPell (R"),

(i) |K(xy)<c 1 ___ forsome >0 andany X, yeR"
(L+x=y)

Then, forall 1< p<ow and g eWpr(R")
lo-T.g|, <Ch"[g|.,, h>0.

Proof for p=c. Let geC'(R")NW, (R") .

Taylor polynomial T, , g(y):= Zag—(x)(y—x)“ ell,, ,

g ol

R, a(y)|scly-x" max max

Ewwww
9= K(xy)a(y)dy|=|o ()= [, K (x )T 1,0 (y)+R.,g(y))dy

(
()= K Y)T 00 (V)dy =], K(xY)R.,g(y)dy
(
(

The estimate of Taylor remainder

a"‘g(z)‘ .For p=o

Il
«

I
(@]

9)-T1,0(0)- [ K (xY)R,9(y) ]
9)-9(0)- [ K(xY)R,9()%]

g
=[[ K (xY)R@(y)

42



9= [, K (x¥) g (v)dy| < [ [K (% Y)|[R.0 (v)]ly
<clgl,., [ [K(x.y)ly—x"dy

1
<C
|g|r,oo J.Rn (1+ | y— X|)n+r+g

1
<C ——d
|g|r,oo J‘Rn (1+|y _ X|)n+g y

ro "

y—x dy

<Clg|
Let h>0. Then for §(x)=g(hx)

Hg (hX)—an K (X' y)g (hy)

aeo-fkxn g,
<c|gl,,=Cla(h-)],, =Ch’[g|,,

r,o

Therefore

=[g(x) j h x,h™ y y)dy”w
=lg(x)- I K (h™x,z)g(hz dsz

=|g (hx)—IRn K(x,2)g (hz)dz”w

Hg(x)—IRn K, (x,y)g(y)dy

e'e]

<Ch'[g| ,
More examples:
Duals to N,
2 : : | 2
2,4 ¢ o 3¢ i
ir 1 ’ a
t I
|
[
0 N\ ~—— | i
U——v/\ ’ \ f’\_,______
-1 . 4 . .
-4 -2 0 2 4 -5 0 5

Daubechies’ famous [9,7] kernel for r =4 (used in JPEG2000)
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, 15—
1+ d’ ,""‘{\" 1 L ¢’ ili .Il
/A [\
0.5 JE 05¢ 7o\
0 ___\v;' T 0 ___q_.h/*»—_\\: ".i /hfx____
-0.5 \ a -0.5 R
-2 0 2 -4 -2 0 2 4
Multivariate Fourier series
T" =[-z, 7] , L,(T") is equipped with the dot-product
1
f,g)= f(x)g(x)dx.
(1.9)= s [ 1 (080
. . izn:ijj
{e"}  ortho-basis of L,(T"), ™ :=e™@ , the orthonormality boils down to the univariate case,
1 ikx 4 —ijx : 1 Ky Xm A—1imX, :
d — - m”~m m md — 5 R é‘
2oy J'Tne e ™dx gzﬂhe e X lm—:! i = O]
Fourier series
. _ . 1 _
f(x)=>) f(k)e™, f(k)= f (x)e ™ dx.
(923 (k) (= G 19
Sct(0= 3 Fl0e KL =l
<N

The partial sum
Approximation from Sl spaces in L,

1 (=TT ().

The sinc ¢(x)=¢(x,
d(w)=g(w,...,w,)
Theorem The shifts {¢(-— k)} are an ortho-basis for S(¢).
. =5, VK jel' o

keZ
Proof Observe that {¢(-—k)}"is an orthonormal basis of its span < <¢(-—k) é(-— )>
(.4(-+ 1)) =3, Vi€L". We now compute using Parseval
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n]

Theorem Let P, be the orthogonal projector onto S(¢)h, where 4 is the sinc function. Then, for f e LZ(IR{“)

s(4)

A

(Pswf) = ‘?(W)l}hlﬂlhﬂn (w), h>0.

Proof Since (¢(-—k),¢(-— i)) =3, ;. we have that 4, (x):=h"¢(h"x—k) satisfy (4.4, ,)=0,,. Thus,
{¢h,k} is an ortho-basis of S (¢)h -

(Ps<¢>“f) (W):(kaf ¢hk>¢hij( )

:hn/2¢( )E(f ¢hk> —ihkw
hn/2 A i
- 1[—h’17z,h*17r]" (W)z < f, h’k>L2(]R”) €

K (27[)n

= 1 £ ihkz —ihkw
‘1[,h—1,r,h—1,r]” (W)Zk:[(zhlﬂ)” I[—h’lzr,h’lzr]n f(z)e™dz |e

= f(w), We[—h'lﬂ',h'lﬂ']n

Why? Observe that {e”‘kw}k . isan orthonormal basis of L, [-h"'z, h—ln]" using the normalized dot-product

Therefore, the restriction of f

the above computation

Therefore, the restriction of f

the above computation

1

(Zh’lﬂ)

to [_h—lﬂ, h-l;;]" is represented by the Fourier series of {eith}k ,» and so, by

(h.g),=

J.[h;rh;r () ()dW

to [_h—lﬁ, h-l;;]" is represented by the Fourier series of {eith}k ,» and so, by

Theorem The sinc has ‘infinite’ / spectral approximation order, i.e., VI =1, vf eW, (R”) ,
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E(1,5(¢)) <C(nn)hf],,.

Remark Compare with the periodic case we proved for the Fourier series Vr >1, Vf eW, ("]I‘)
[f=Sufl, <N,

Proof Let f s . This means f eWz'(R”), Vr>1. We claim that

of i swsctmnlef, e Zlo i,

lor=r

1

(27)

Let’s start with n=1. In this case

(1) (w) = (iw)’ £ (w) = |(£©) (w0 =i | (w)]

R"

So, by Parseval
1

2 279

" 1

( f(r)) (W)‘2 dw=—

272- R

H fr f (W)‘Z w[" dw

For n> 2, repeated application, coordinate by coordinate, each step similar to the univariate case, gives

we||f (W)‘ .

(D7 1) (w) = (iw)" f (W)= (D) (w)] -

(iifj (w)= j Iiif(x)e“Wlxle“WZXdeldxz

2w (fo( 0 -
— —IWy X - —f —IW1)<1d d
j e U " (axz (X)Je le X,
=iw, I g ( I % f (x)eiwlxidxljdx2

—0 2

H i —iwg X i a —iw, X
:|w1£e 11('[05_)(2]:()()8 22dxzjdxl

= —W,W, T gt ( T f (x)e ™" dx, ]dx1

—00 —00

= —W,W, j j f (x)e "Me ™ dxdx,

—00 —00

=—ww, f (w).
This gives

(D f )A (W)‘2 dw =

aglp__ 1
HD sz (zﬂ)" J.]R” ( )

Now, for n>2
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Thus, we obtain

1
)Z (272.)” I:@”
(n,r Z‘

jaf=r

(

C(

Da

3, LZ‘ > Jz

:C(n’r)|f|r,2

Now, for h>0, we[-z/h,z/h]" = h|w| > 7 . Therefore

2 1 R 2
2 - (27[)” J‘R”\[—iz/h,ﬁ/h]n ‘f (W)‘ dw

o f(w)‘2 dw

(ECIE R

1
<

B (27[)” J‘}\”\[—zr/h,ﬁ/h]n |hW|

<h* LL W

(27)"

<c(n )il

1‘A(w)‘2 dw

The general case of f eW, (R”) is obtained by a density argument {f } f e, ||f —f |LN — 0.

2 koo

Refinable Shift Invariant Spaces

Def A refinable SI space satisfies S(®)c S ((I))”2 .Inthe PSl case, S(¢) =S (¢)1/2 is equivalent to the

existence of a two-scale relation, i.e., the existence of a set of coefficients { p, } such that
X)=> pd(2x—k).
k

A refinable Sl space provides a multiresolution analysis:
- S(d))2 c S(d))c S((ID)l/2 c S(d))1/4 c
Under certain conditions (such as compact support and reproduction of constants) we have for 1< p<oo,

US =L, (R").

In some cases, we also require
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Ns(@) =0

Theorem For r >1, the univariate B-spline satisfies the two-scale relation

zz“(j (2x=k).

Proof Recall that N, = N, *---* N, and therefore
——

r times

Assume that there exist {p, , } , such that

Zprk (2x-k).

This implies that

W)= 0 (N, (2)) (w)
(7] g

PN ((1+e—i(W/2))(1 g i(wi2) )) _ or-l (1_e—i(W/2))r Zr: pr‘ke—ikwlz
k=0

e LT (1+e i(w/2) ) z D, & gikw/2

S Py :Zl‘r[;j, 0<k<r.

Application: High quality image resize (= smaller)

Goal: Create a ‘faithful’, high quality low resolution digital copy of { f (k)} . The low resolution is determined
by ascale h>1.

We use the sinc ¢ as a platform for an ‘ideal low pass’.

Let {f (k)} be input samples. We assume they are samples of a band-limited function f e L, (R"),

supp( f) cT".
Therefore

- ¥ 1 (K)(x-

kezZ"
This is because
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(f’¢('—k)>=(27f)7"<fA,¢('—k)A>
-1 [ f(wyeaw = f(K)

(27)

Algorithm: Project f onto S((;ﬁ)h and then subsample the projection at the rate h. On the Fourier side, the

projection is simply f (w)L__, . (w).
Digital implementation I (‘low’ dimensional signals):

1. Apply a discrete Fourier transform on the signal f of dimension M".

2. Leave the (h’lM )n lowest frequency Fourier coefficients and set the rest to zero to obtain f, .

3. Apply an inverse Fourier transform f, ?1 f,.

4. Subsample fh in each coordinate direction at the rate h to obtain a lower resolution version of f .

Note: In step 3, one can apply the appropriate inverse Fourier transform only on the lower resolution
coefficients and after scaling obtain directly the lower resolution.

Resizing large images

For large images, applying the Fourier transform on the whole image is time consuming. We would like to
apply ‘local’ filtering prior to the subsampling and obtain results which are a good approximation to the ideal
IOW paSS with equivalent visual quality. To this end, we go back to the ‘functional model’. Recall that

Z f e [—7z, 7z]n . We now compute the Fourier series of the ‘filter’:

lr/hlz/h] Zah e, h>1.
1 n_sin(zk; /h)

1 ik X;
a, (k) = j—;r/h;r/h HZ_Jn/h ' :H ﬂkj

(272') j-1 i

Therefore, using also the notation for the discrete sequences ¢ :={f (k)} ., o ={a,(k)} ..

f(W)l[—zz/h,zr/h] (W) Zk: f _Iszah e
=2 f(K)a( j)e"(k”)
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When we translate this back to the ‘time’ domain, we obtain that the ideal low-pass can be achieved through the
convolution of the filter a,f with the samples f In practice (MatLab, PhotoShop, etc.) we apply a finite filter

that approximates the action of aﬁ . After the convolution we may safely subsample the values.

Wavelets: Efficient adaptive/sparse/nonlinear approximation

Motivation

Recall approximation using non-uniform piecewise constants

=inf ||f - g||

geZy

N ::{chl[t”t_ ) T={t;}, 0=t, <t <--- <ty :1} oy (F),:

Var ( {Z‘ J+1 ‘} .

To approximate a function of bounded variation in [0,1] , in the maximum norm from X, , we created a

N Var( f)
partition where Var[t r ](f)ST We then selected a; as the median value in [t t

jrjH

] to obtain

j+1

Var[tj ] ( ) Var( f )

| (x)-ay|< ) < L oxe[tt, ] -

Questions:
1. Can one implement this in practice? In higher dimensions? Not really. One then resorts to the greedy
algorithms of adaptive binary partition (aka decision trees, Random Forest in machine learning)
2. Higher degree polynomial pieces?
3. What about approximation in L, ?

Wavelet construction starts with a multiresolution

Let gL, (R"), |¢], =1, with
V, =S(¢)=S(4)” =V,

i —

V,=S(¢)" =span{g,,} . 4, (x)=2""4(2'x-k), jeZ, keZ".

VeV e,V ceaVy eV, ce

Remarks

1. In signal processing books, the notation is ‘reversed’ ¢;, (X):= 2’1'”’2(,/5(2*" X — k) and V, cV, ; because
the discrete wavelet transform takes signals in V, and decomposes into lower resolutions.
|#,], =1, jez, kez".
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Haar wavelets — Introduction using the discrete wavelet transform
b=N,, 4, =2"p(2). k), H¢j,kH2 =1, Vj,keZ.

Suppose we are given a discrete univariate signal f° :{ f (k)}keZ which we want to compress. In practice one

1023

typically gets a finite number of samples, e.g. f°={f (k)} "

We assume the ‘approximation’

f(k)=(f,N,(-—K))=(f,p(-—k))=f2.

-1

_ 1
Compression by ‘averaging’? f,~ = ﬁ( fo + f20k+1) . But what did we really do? We projected onto S (¢)

fkil :%( fzi + f2i+1):<f’%N1(2l'_k)>:<fa¢_1,k>-

But we ‘lost’ data. This can be recovered by using the Haar Wavelet

1, 0<x<l1/2,
w(x)=4<-1 1/2<x<1,
0, else.

and computing

ak_l :%( f2?< - fzi+1):<ff%‘/’(z_l‘_k)>:<fiw1,k>'

So, with W, =S ()" =span{y, } v, (x)=2"p (2'x—k), we shall see that we have
V, =V, OW,.

The Crux - Sparsity The wavelet coefficients {ak’ 1} serve as the ‘difference’ between the two scales. In many

applications a large number of the coefficients {ak’ 1} are ‘insignificant’, e.g with absolute value below some
threshold.

We continue recursively with the decomposition algorithm and now compute
f? :i( fl+ f2k11)=<f,E N, (27 -—k)>:<f,¢2k>.
2 ' 2 -

So, we computed a projection onto V., =S (¢)72. We also compute wavelet coefficients
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L, 1

-1 -1\ _ 1 -2 _
a, _ﬁ(f% _f2k+1)_<f1§l//(2 '—k) _<f’l//—2,k>-
After J steps, we get the discrete wavelet decomposition

e} ey () ]

Lemma

W, @V, =V, VjeZ.

j+1?
Proof

1
Observe that Wy, V. Indeed v = E(% —¢1,1) and similarly to the assignment W, =S (y) = S (¢5)1'2 =V,.In

this particular case it is easy to see

1
Yok = ﬁ(@,Zk _¢1,2k+1) -

Next we show that V, LW, . It is easy to see that <¢01k,1//0‘j> =0 for k = j, simply because their support does
not overlap. For k = j, we have (¢, ,.W,, ) =(dy0. Wy, ) =1/2-1/2=0. This gives that V, LW, .

To show that the sum of the spaces gives V,, it is sufficient to see that

1 1
bo= E(%,o + '//o,o) = E(%,o _‘//o,o) :
This gives
B = o (X_ k) = %(¢O,k + l//O,k)'
and

Bk =P (X - k) = %(¢0,k ~Vox )

Therefore, we may conclude that W, @V, =V, . By scaling, this gives

W, @V, =V, VjeZ.
Theorem The Haar wavelets are an orthonormal basis of L, (R).

Proof
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(i) U—\/J =L, (R). How do we see that? Several ways. If f eL (R), 1< p<oo,then o, (f ,t) —0.To

Pt-0

prove that observe that for any &£ >0, one can construct g eWé(]R{) through a convolution of a

Gaussian with f , such that ||f — g||p < ¢ . Then,
a)r(f,t)p SCa)l(f,t)p
<CK,(f.t),

<c(|f -gl,+tlg],,)
SC(8+t|g|1yp)l:%C€.
This implies that
E(.V,) = E(f,s,(;»)”")p <cay(f,27) >0.
Now, we use the fact that forany J € Z,
V, =V, ,0W,, =V, ,eW, ,&eW, j =---= @ W,.
And so,
W, -0V, =L,.
o
(i) Orthonormality of {y, .}, w;, (x)=2"p(2'x—k): Let ¥, , ,¥ \, be two Haar wavelets. If J; = J,,
then simply by consideration the intersections of supports, supp(y;, ) =[27'k,2"} (k+1) |, we have that
Wik Wik ) = O, I Ji # Jo. thenw.l.g. J, < J,. Then, we claim that ; , =const on the support of

¥, k, - Indeed, if the supports do not intersect, then ¥/; , = 0, on the support of Wi, k, - Else, there are
two possibilities: v, , =22 or y, , =274 on the support of v, , . In any case,

<Wj1,k11'//,~2,k2 > = CI}R Wi =0

There are many constructions of univariate orthonormal multiresolution and wavelet systems. Unlike the Haar
wavelet, they do not have an analytic definition.

The cascade algorithm
Suppose ¢ is given by the two-scale equation ¢ = z Pnéin - Then,
= ﬁz pad(2x-m)=
J2¢(2x k) 22 p.#(2(2x—k)-m)= 22 P (4x—(2k +m)) =
b= IZ Pracs,

And in general
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¢j,k = z p|-2k¢j+1,|

Therefore

¢= z pkz p|72k¢2,l = Z(Z Py Pr_2k j¢2,| .
k | | k
Recursively, this gives explicit coefficients for any J >1,

¢:Zp“¢“ 1 ¢J,I(X)=2J/2¢(2JX—I).
|
This gives a subdivision algorithm, that starts with an initial sequence {50'k}kez at the level 0, and at the level

J has values {p“} . If we plot the values 2" P, at the dyadic points 27’1, we will see an ‘approximation’ to
9.

Vanishing Moments
The main idea is that we would like S(¢) to have higher approximation order r, by reproducing polynomials

of order r (degree r—1). If ¢ has compact support and {¢(-—k)} are an ortho-basis of V, = S(¢), then for any
polynomial P eIl _, (R)

P(x)= 2 (P4 (-=k))g(x—k).

k

If  has compact supportand S () L S(¢), this gives

[ PO (= Dax=Z(Pg( -k (p(—K)p(-1))=0.  vieZ.

=0

So the wavelets will have r vanishing moments

J'Rxm://(x)dx:o, m=0,...,r-1,
and
[Py, (x)dx=0, VPell, ,(R), VjkeZ.

This provides in many cases better sparsity! We shall see that this is the efficient alternative to adaptive
piecewise polynomial approximation of order r (degree r—1).

Discrete (orthonormal) wavelet transforms

1/2

Suppose S (¢) = S(¢)"*, where {¢(-—k)} are an orthonormal basis of S(4) and that S(#)® S () =5(¢)
 With {y,, =22y (27 -—k)} an orthonormal basis for L, (R).

Therefore, there exist coefficients {p, },{}, such that

¢= Z pk¢l,k , W= qu¢1,k .
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We are given again, discrete samples { f (k)}keZ which we want to compress. We assume again that

f(k)~(f,g(-—k))=f’.
We want to compress by projecting onto V ;. We use

=2 p.#(2x-m)=

1

\/5 $(2'x-k)= me ( (2‘1x—k)—m)=zm:pm¢(x—(2k+m))l_im
Py = Z Pr_ok o,

=(f.du)= <f b 2k¢o.>=lzp.2k<f,¢o,.>=Zp.zkf.°

In the same manner we compute the wavelet/difference coefficients

G=(fy)= <f >a. 2k¢0.>=2q._2k(f,¢o,.>=lzq._2kf.°

We then continue to process { f,*} to compute {f,*} and {&,*} ... etc...
Multivariate wavelet bases via tensor-products

Assignment Assume ¢ v generate a univariate orthonormal multiresolution and a wavelet system,
respectively. Then, for n=2 the following is an orthonormal basis of L, (Rz) :

{l//?,k}1 (//ik(x):zzj(//e(ZjX—k), e=123, jEZ, kEZz,
where

v (%) =8 ()w (%), v (6%) = ()8 (%), ¥ 0wx%) =y (x)w ().

We can abbreviate notation using the notation | = (j, k,e)

foIZ(f’V’l)'//

Biorthogonal wavelets

Orthonormality of wavelet bases is a limitation. For example, one cannot construct symmetric wavelets/filters.

Def Riesz Basis {y, | is a Riesz basis for L, (R"), if there exist 0< A< B <oo, such that for any {c, } €1,
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<B|{c,}

2
I,

A||{c| }”i <

ZCIWI

Notice this is a Parseval-type equivalence. One can construct a dual basis {gﬁl } (not unique), such that:

2
L

i. (#;.w,)=5;,, (biorthogonality),
i.  for fel,(R"),

N}

f(X)L=ZI:<f,‘/7|>‘//| (X)’

i (e, - o)

This means ‘stability’ of the representation. The application is mostly in nonlinear approximation.

I,

1.5, — = |

Z .
1 2¢ ] | 3 /,' .,\\ |
0.5’ / Y
0.5 -‘ | yd e
i 0 __,’ T
0 — |
|
-05l | ~osl .
-1 0 1 -1 0 1 2
fﬁ—T' ' < | “] ! - ! =
N | T il | i
1 2e¥ h 1 28¥ |08 ¥Ad M | os| 3¢ i ]
{ | Al
i l ||, [
i\ . 0f—— / /\,——— oF——"\ [ |/ -
o—\ || S~ o— — VI | VI
[ ‘ \ -05 | 1 -05] 'l;

-1 ) . - — —1'__.__?_..___._I —1!___._ __-___LII N
“3-2-1 0 1 2 3 4 -4 -2 0 2 4 -4 -2 0 2 4 -5 0 5
2 — - JEREE — e 1 er———— . — 2 ‘l"._

] I |
|
¢ l 6 I
1{ 37 1! b 4 3,9 |l
| i J | I {
0'»-———-\/’\Hr | If"\,—— o——\/ l,‘\,«———
‘.," ||."r IU Lll
] S |
-5 0 5 -5 0 5 10
2 1_ ] 2 [ o
it | ‘J
AR Y- X IH A !
f
o[— 4-w’1|!\'u.d,n~—1 0——*11'1\,[5’“—
-1t . H -1 lJl[
| ] i
-2 v -2 v
-4 -2 0 2 4 -5 0 5

Example of biorthogonal duals of B-splines and corresponding dual wavelets
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) coefficient of coefficient of
N,N n e " in my e~ in g
0 557543526229 .602949018236
N=4]1, -1 .295635881557 266864118443
N=4|2 -2 | —.028771763114 | —.078223266529
3, —3 | —.045635881557 | —.016864118443
4, -4 10 026748757411
15 —— P —
1 1 ° ."l.‘\‘\. !- w "r.‘
."l ‘1. l 1 | ||' \
{0 [ |
0s /N ] i
/ \ - S
o/ o 0 \.’[ 1{\ /
05 il -1l '
-2 0 2 -2 0 2 4
1§~ ———— - 2—
Y A n \
1| @ I\ v i
A I
05t F.rJ \ ol | ’-_k .
| f [ /
D !__fr-‘\Jl': L\I“/f_’ - \lkllt:‘ ‘||! |
=051 . =f_. P |
-4 -2 0 2 4 -2 0 2 4

The ‘famous’ 9/7 scaling function and wavelet duals

Nonlinear approximation with wavelets

|f=ol,-

We define the nonlinear ‘manifold’ of all N-term wavelets

Ly = { Z G,
#1<N
The degree of nonlinear/adaptive approximation with wavelets

oy (f), = inf

PeXy

How to choose a good approximant from X ? We use the ‘greedy’ algorithm and reorder the wavelet

coefficients by
(£ )= [F ) 2[(F0)

fu (X) ::ZN:<f,y7,j>V,j ez, .

j=1
For biorthogonal bases, the error can be estimated by

WIZ 2...,

and create the N-term sum

2

[ - ful,=

i <f1‘/7|j>‘//|j

j=N+1

2
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This is our efficient, multivariate version of non-uniform piecewise polynomial approximation!

Sig. Prop. = 2315 Bit plane 8
Refine = 932 Compression ratio =23 : 1

Cleanup = 2570 RMSE =4.18 PSNR =35.70 db
Total Bytes 5817 % refined =291 % insig. =93.99

Jackson theorem for wavelets

We know that if f € BY (R”): B, (R”), then f el (R”) . The next theorem says that the ‘knowledge’ of the
additional smoothness of f gives more

Theorem For the parameters 1< p <o, & >0 and
l «
-

1
n p’

we have the embedding
B/ (R")=B (R")cL,(R"), feB(R")=feL,(R").

The following Jackson theorem is a special case that is sufficient for our purpose.
Theorem [Jackson theorem] Let {1, },{17,} be dual Riesz wavelet bases for L, (R”) where:

(i) supp(v®).supp(¥°)<c[-M,M]", ecE.
(i) wiwteW!, ecE, r>a,
(iii) w®,w°, ecE, have r>a vanishing moments.

Let p=2 and



Then, for f e B! (R")
GN(f)zsnf N fN||2SCN_a/n|f|B;1'

We will prove most parts of the theory that leads to the Jackson theorem for wavelets.

Lemma 1 For the case of L,-normalized wavelet y, (x):=2""y*®(2'x—k), 1 =(e, j,k), we have that

lsupp(, )| =(272M )" ~ 27" and

e

||V/| ”0O =22 |y U= C‘SUpp(‘r’/| )‘71’2 .

J
Lemma 2 Let F(x):chjz//,j , where ‘c, ‘s L. Then,
=1

i

|F|, <cLI*
Remark Notice the triangle inequality gives a weaker estimate

J J
[F, < ZHC,J_I,//,J_ H2 =Z‘c,j ‘ <LJ.
j=1 j=1

Proof We apply Lemma 1

J
”F“Z - ZCHW',‘
=

2

IN

Cljl//lj‘

2

IN

M- M- T

—
I
=

L) (')Hz

o]

Clj H‘W“

ZJ:
=L

supp (v, )

Define

F ()= min {\supp(w., ) - x esupp(w, )} . Xe Osupp(w., )
! U

0, else.

Any point x e R" can only be contained only in a finite number of supports of wavelets at the same level and as
we go to lower levels, the size of the support grows by a factor of 2". This means that for any x e R",

>

i=L

-1/2

sup(y, )| 1, (X)<C (T +(2' () " ]

< CF(X)_M.

So,
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IF|, <cL|r()™

2

12
—CL josupp(%j)r(x)‘ dx]

4 1/2
dxj

Theorem [Wavelet characterization of Besov spaces] Let {y, },{7,} be dual Riesz wavelet bases with

properties as in the Jackson theorem. Let p=2 and
1
T

supp (v, |

<CL ZJ: Lupp(%j)

=t

=CLJY?,

a 1
—_— 4 —.
n 2

For f eB?(R")

]1/1'
Remark Here is where the proof uses all of the properties of the wavelets — compact support, sufficient
smoothness, vanishing moments

]1/1

”IB”wl, = SUF()) #{ﬂk : |ﬂk| > 5}1” €.

[y =42 (0=( Z10)

Weak |_space

Recall the ‘strong’ norm ||/3||| - (zwk
i k

Def For asequence B={4,},

Forany £>0, #{B,: |B|>¢}e"< Y. |

k|B|>e

=[p

|T, . This implies that ”ﬂ”wl, S||,B||IT and I cwl_.

Example Typical example for gewl, gl is: g =1/k, since

1,12 N-1
R e R

Proof of Jackson theorem Let f € BY (R“) . Then, by embedding f €L, (R“) . By the wavelet

1t
characterization |f| , ~ A/ (f):= (ZK f7, )‘j .For v=1,2,..., denote
‘ I

v

We have, using the weak | space

A, ={ls 2N (F)<[(f)| <2 A ()}
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<D HA,

v<m

=#[ A,

v<m

=#{1: 2" A (1) <[(f.9,)}
- #{u zmA/T(f)<‘(f,1ﬁ|)‘}2m’/l/r(f)T}ZmT/l/,(f)T

& r

IN

2mr/l/;(f)*7

fce.ol,

{ct.l
= WL (1) 2N (f) =2

IN

2" N ()T

Let N:=> #A, . fy= > (f,7, )y, .Denote F,:==> (f,17,)y,. Weapply Lemma 2 to obtain

v<m leA, v<m leA,
ks 2R
< YRl
v=m+l
<CS 27N (F)(#A,)"
v=m+1
< C./l/z. ( f) i 2*V+12V‘[/2
v=m+1

<C./l/ zz v(1-7/2)

v=m+l

<C./l/( ) m(1-7/2)

7<2

—C./l/( ) -me(1/7-1/2)
< CA (f)No"

N<2™

<CN-“| £,

Assignment: Prove the case > #A, <N <> #A, .

v<m-1 v<m

Approximation Spaces

Let ®:={d,} ., each @ isasetof functionsin a (quasi) Banach space X, satisfying:
(i) Oed,, d,={0},
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(i) Dy C Dy,
@iy ad, =9, va=0,
(iv) @,+®d, <D, for some constant c(P),

(V) Uy @y =X,
(vi) Each f e X has a near best approximation from @, . That is, there exists a constant C(CD),
such that for any N, one has ¢, e @,

”f_(pN”xSCEN(f)x’ EN(f)x = inf ”f_(p”x'

pedy

Examples for @,

Linear
- Trigonometric polynomials of degree <N, X =L, ([—ﬂﬂ]n)
- Algebraic polynomials of degree <N, X =L, [—1,1].
- Uniform dyadic knot piecewise polynomials over pieces of length 27", of fixed order r, X =L, [0,1] .

- Shift invariant refinable spaces a, =S (¢)* , S(¢)=S(g)", X = L, (R").
Nonlinear/Adaptive

- Rational functions of degree <N, X = Lp [—1,1],
- Free knot piecewise polynomials of fixed order r over N non-uniform intervals, X =L_[0,1].

- N-term wavelets @, =X ::{z c,yx,}, X=L(R").

#I<N

Def Approximation spaces For ¢ >0, 0<g<w, f e X,

(Eveors] s o<ass

|ng N=1
sNu>E)N“EN(f), q = .
¥l =1+
One can show
» ; 1/q
|f ) [Z;)[ZmaEzm(f)]j , 0<qg<oo,
Ay "

sup2™E,, (f), (= 0.

m=0

Goal: Fully characterize approximation spaces by smoothness spaces (iff)
How? It’s pretty heavy lifting:

1. Jackson & Bernstein machinery,
2. Interpolation spaces,
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3. Equivalence of interpolation spaces & Smoothness (Besov) spaces.

Jackson & Bernstein machinery

We assume there is a linear quasi-Banach space Y :=Y (r),or Y :=Y (), Y < X, so that the following two
inequalities are valid for @ :={®} ., for N >N, for some fixed N,,

[Jackson]  E,(g), <CN""|[g|, , geY.
[Bernstein] |g|, <CN"|¢], . ped,.

We have seen a few examples for Jackson- type estimates

(i) E.(9), <CN"' |g|r'p, @, trigonometric polynomials, g €Y (r)=W, [-7,z|c L, [-7,7]=X,
(ii) E(g,S(¢)2N )p <c2 Mgl ®y = S(#)° shift invariant spaces,

geY(r)=W,; (R")cL,(R")=X,
(iii) Ey(g9) <CN™* |g|Lip(a), @, piecewise constants over N uniform intervals, 0 <« <1,

Y =Lip(e) < L,[01]=X,
(iv) oy(9), <N7|g|,, @, adaptive non-uniform piecewise constants, Y =W,'[0,1] = L, [0,1],
) oy(f), <CN“[f @, =X, N-term wavelets Y =Y (a)=B c L = X.

B !
Let’s see a few Bernstein estimates. We begin with trigonometric polynomials

Theorem For r >1 and 1< p <, for any real trigonometric polynomial T, €I, (']1")
_Ir r
‘TN ‘r,p - TN 0 <N HTN Hp

We shall prove the case p=co and show something stronger.

Theorem For any real T, €11, (T),
To (X) +N2Ty ()" <N?[Ty 0, xeT.

Corollary |Ty| <N|Ty]|., and by repeated applications HT’\('r)Hw <N[Ty ..

Proof of theorem First assume [Ty | <1. W.l.g we can assume x =0, and that Ty (0) 0. Let &, |a|<7/(2N)
such that sinNe =T, (0) and define,
Sy(y)=sinN(y+a)-T,(y)ell,.
At the points
(2k-1)7
2N
63

Y, =-a+




. . C(2k=-1) 7 N
sign(Sy, () =sign sm( - ) ~To (i) [= (1)
Ta . Ml

:(_1)k+1

This means S, has 2N zeros, with a unique zero at each interval (y,, Y., ). Next,

Also S, (0):=sinNa—T,(0)=0, S, (y,)>0.If S{(0)<0, then there must be another zero in (0, y, ), which
is a contradiction. Hence Sy (0)>0 and
0<T,(0)=NcosNa—S; (0)
<NcosNa = NvI-sin? Nar = N/1-T, (0)°
This gives
Ty (0)° <N*(1=T, (0)° ) =Ty (0)° + N°T, (0)° <N*.

Now take arbitrary T, =0 and 1 >|T,|| , and apply this relationto T, /4 . Then

T (0)

12

2
+N2T“‘/Iﬂs N2 =T, (0)° +N°T, (0)° <N?222

= Ty (0) +NT, (0)" <N?|T, |

N
A-{Ty]

Bernstein for non-uniform piecewise polynomials. Let

jrhi+l

N-1
NS ::{Z(;le[t o) :T={t;}, 0=ty <t <---<ty =1, P, eHr_l}.
J:

Lemma For any algebraic polynomial P HH(R”) , bounded convex Q<= R",and 0< p,q< oo,

[Pl =12 Pl
with constants of equivalency that depend on p,q,n,r but not on the polynomial or domain.
Proof By John’s Lemma, there exists an affine transformation, Ax=Mx+Db, such that

1/g9-1/p |

B(0,))c A*(Q)< B(0,n).
Observe that
A(B(0,1))c Q< A(B(0,n))=|Q| ~[det M|.
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By the equivalency of same finite dimensional (quasi) Banach spaces, there exist constants depending only on
p,q,n,r, such that for any P eH,_l(R ) P "~ HPHH(B(OM)). Now, for P €I1, ,, denote

P:=P(A-)eIl,,. Then,
[Pl o, =Idet M [B],_,.
<ldetm [ P]_,
<CldetM [P ..,

19 ||
P

<C|det M|

Ly(A7(9)

<ClOf Pl o

1/9-1/p |

1 1
Theorem For p € X, , —=a+6, O<a<r,
T

|Plge <CN“[g], -

Proof Let P, eIl and t > 0. If t<(t;,~t;)/r, we have seen we can estimate

(Pl t) <C .

I t454)

PJ 1[t] ie 1)

For t Z(t.

j+1

—t;)/r, we can bound by

a;,(P.l ) CHPl p
=Clr]. ..

Uz
SCH jHLm[tj,le]( ]+l_tJ) .
Therefore, for 0 <7 <1 (the case 1<z <o is similar)

N-1 T
[0}
zr( )

J=
mm(t (tm—tj)/r).

=0
N-1 T

<C|P

JJ1

We apply the lemma for q =,
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N 1
Holder p>r ]=0

_C(Z i[tt )

=0 jrtj p

z/p

Therefore
|Ple: <Cll, N*" =CN“ ],

Theorem [Bernstein for wavelets] For ¢(x ZC, v, 1<p<o, 7 '=aln+1/ p, we have

IdWSCN”WﬂM

Theorem Let Y, X, r>0,and ®:={®,} as above. For the K-functional
K(ft)=K(X,Y,f,t)= |grllY‘{|f -q|, +t|g|Y},

0] If the Jackson inequality is satisfied then

E (f), <CK(f,N"), fex,N=12...

(i) If the Bernstein inequality is satisfied then (for ||Y semi-norm)
K(f,sz)scszkz;zkf E,(f).
Proof

Q) Let f e X . By the Jackson theorem, forany g eY

B (), <If -9l +Ey(9), <C(IF -9l +N]a,).
We then take infimum over geY.
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(i)  Let g ed,,suchthat |f —¢[<CE,(f), k=0,12.... Denote w, =@, =0, y, =0, —¢,, k=1
Observe that by properties (iii), (iv), v, € ®_, . Using the fact that {(pk} are near-best approximants
[l <[ f =+ - o] <2CE,. (), k=1.

Since ¢, = kzm;(//k , [wol, =0, it follows that
K(£.27™) <[ f =@l +2™|enl,
<c Ezm(f)+z-mf2|wk|Y)
<C Ezm(f)+2m'kzil:2kf||y/k||xj
<c Ezm(f)+2‘erm:2“E2“(f)j
=

< cz*"“zmlzk' E, (f).
k=0

Interpolation spaces
For 0<@<1, 0<q<w, X,Y(r),

K(ft)=K(X,Y,f,t)= |grl1Y°{||f -9, +t|g|Y}.

U:[”K (.9 %)ﬂq  0<q<w,

supt™ K (f.t), q = .

O<t<1

[l =0l +1 -

:|f| =

It is convenient to discretize at t, =(2") " =2™™, m>0,

1/q

B (i[zmmK(va_mﬂq) , 0<qg<oo,

1], ~ 1\

0.
sup2™’K(f,27™), q = .

m>0

Def We call the space of functions for which | f|, , is finite the interpolation space (X ,Y)gq.

Observe that by definition (X 'Y)e,q < X, while for 0<@<1, we have that Y c(X,Y)Hq . To see this, let
g €Y. Then,
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i[zmre ( o-mr )T < il:zmmz—mr |g|Y ]q

m=0 =0

—|ql® S 2mrq(6—1)
ol 2,

<C(r.q.0)lgl,-
Also, for 6, <6, (X,Y)H]q Q(X’Y)az,q . So, for 0<@ <1, we have a ‘scale’ of spaces between Y and X .

Example (|_p,Wpr)qu =Bs(L,), @=06r, 0<f<1,1<p=<w.

Proof
dt a dt
Lol Z=[lek (o, 2
[ [t g (0 p}q% s=t” = ds= i “”dt:>slds=%tldt
o, a ds
S:':Ur O|:S a)r(f,S)p:| ?

= | f |gg(Lp)

Lemma [Discrete Hardy inequality] For a sequence a={a,} _, we define

If {a,},{b,} are sequences and we know that for some 1>«
b,|<C2™ Z 2¢la |, vm,
k=—o0

then, [o],, <Clal, .
1 1

Proof W.l.g assume the sequences are non-negative. We prove for 1<q<ow. Pick a < f#<A. With —+ —=1,

q q

i 2k/1 a, = i 2k(/1—ﬁ)ak2kﬂ
k=—o0 k=—o0
m 1/q’ m 1/q
< 2k(ﬂ—ﬁ)¢j ( 3l Zkﬂqj
1/q
<c2"* (Z aqzkﬂ‘*]

:—OO

Therefore,

68



S gmapt <C Y gy a3 g

m=—o m=—w k=—o0

-C z m(afﬂ)q i 2kaq a'? 2k(ﬂfa)q

m=—o0 k=—00

_ N Y kagq (a-B)ank(s-a)a
Z Z 2Heagy (2mePigHen)
S graagry ko

<C i 2“9 a]

Theorem If the Jackson and Bernstein inequalities are valid for X,Y (r),®, then, for 0<0<1, a=0r
0<q<oo,then

A(X) = AT (X) = (X.Y),,

Proof Assume f e(X,Y)gq. By a previous theorem, the Jackson inequality gives E, (), <CK ( f ,2‘”").
Therefore, with o :=6r,

[2™E, ()]
[2mK (2™ )T

q
6,q°

D iMS

IA

C

o

IA

C

— 3
—h 1l

Now assume f e A7 (X ). We shall use the discrete Hardy inequality. In our case, we have a, =E,, (),

b, =K ( f ,2’”"), for m>0, a,,b, =0, for m<0. Using the Bernstein inequality, we proved that with
A=r>a=0r

K(f,Z‘m’)SCZ‘mrzmlz”Ezk(f),

k=0
Therefore,
0 Uq
|f|9q ( ) 2mr6’ f 2 mr):| ]

© 1/q

o[ gfrme. o)
m=0

<C|f|,..

?

69



Characterization of approximation spaces

. Trigonometric polynomials

X=L[-mx], Y =W [-m7], r>1 1< p<w.
We proved the Jackson theorem
EN(f)pSa),(f,%j Vfel,=E,(g), <CN|g| , ¥geW,.

p
We proved the Bernstein inequality,

|TN |r,p - HT“(‘r)

= N[Ty]l,. v, eI (T).

So we can apply the Jackson-Bernstein machinery to obtain for 0<8<1, a=0r, 0<q<,
A (L) = AT (L) = (L W;), , ~ B7 (L)

Dyadic piecewise polynomials approximation

X=L,[01],Y=W;[01], r>1,1<p<co.

We proved the Jackson theorem for refinable shift invariant spaces S(¢)c S (¢)1/2 , Which include B-
splines that are piecewise polynomials

E(9.5(¢)" ) <c27g],, YO W,
P

For 0<@<1, a<r-1+1/p, 0<q<oo,

. Wavelets

X=L,(R"),1<p<eo, Y =B,

1
T

S|
+
S |-

Jackson
oy (f), <CN™"[f

BY

N
Bernstein ¢(x)=) ¢, v,
[

[l <CN“"[e] .

Approximation space with parameter r=a/n, 0<6<1,
Aqgam (Lp) - (Lp' B/ )g,q'

Reiteration theorem (from interpolation theory) If
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1:6’—Ol+£, 0<6<],
q n p
then
(Lp' B:( )g,q - Bqag

- So, we can circle back to the original notation, define @ =6« , 7 by
1 «a
T N

1
+ _ k)
p
then
A (L, )~ B
4. Adaptive non-uniform univariate piecewise polynomial approximation

- Same approximation space as wavelets. So, wavelets are a better way to implement the adaptive
approach, certainly in higher dimensions.

Important observation So, we get characterizations with Besov spaces of different indices...but they all look
the same. Not so! Let’s go back to the example of Q= [—1, 1],

0 x<0
f(x):{1 0<x

We showed that @, ( f,t) ~t"". So, if we want to compute the Besov semi-norm in By (L, ), it is sufficient to
compute
i a a dt 1 (Vz-a)g-1
[ (oo, (1,0),) TN-[Ot dt.

We see that only if 1/ 7 > «, this is finite, e.g., we need to integrate the modulus at ‘smaller’ index T for higher
smoothness. This means nonlinear approximation, can provide a good degree of approximation (fast decay
rate), for functions that only exist in Besov spaces with ‘smaller’ index 7.
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