Theorem list for the exam

Theorems for 20 points

1. [Hölder Inequality] Let $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Prove:
(i) Young's inequality

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{p^{\prime}}}{p^{\prime}}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \forall a, b \geq 0 .
$$

(ii) For $f \in L_{p}(\Omega), g \in L_{p^{\prime}}(\Omega)$,

$$
\|f g\|_{L_{1}(\Omega)} \leq\|f\|_{L_{p}(\Omega)}\|g\|_{L_{p}(\Omega)} .
$$

2. [Summability kernel]
(i) Define the properties of a summability kernel over \mathbb{T}.
(ii) Prove that for a summability kernel $\left\{h_{N}\right\}$ and $f \in C(\mathbb{T})$,

$$
\left\|f-h_{N} * f\right\|_{C(\mathbb{T})}=\max _{-\pi \leq x \leq \pi}\left|f(x)-h_{N} * f(x)\right| \underset{N \rightarrow \infty}{\rightarrow} 0
$$

3. [Piecewise constant approximation of Sobolev functions] Prove that for $g \in W_{p}^{1}(\mathbb{R}), 1 \leq p \leq \infty$,

$$
E\left(g, S\left(N_{1}\right)^{h}\right)_{p} \leq h\left\|g^{\prime}\right\|_{p}, \quad h>0
$$

4. [Piecewise constant approximation of Lip functions] Prove that for $f \in \operatorname{Lip}(\alpha), 0<\alpha<1$,

$$
E_{N}(f)_{L_{\infty}([0,1])}:=\inf _{\phi \in S\left(N_{1}\right)^{1 / N}}\|f-\phi\|_{\infty} \leq C N^{-\alpha}|f|_{L i p(\alpha)}
$$

Comments:

(i) You may use the estimate for $g \in C^{1}[0,1], E_{N}(g)_{\infty} \leq N^{-1}|g|_{1, \infty}$.
(ii) You may use the equivalence of the modulus of smoothness and K-functional.
5. [Discrete Besov norm] Define the integral form of the Besov semi-norm over $[0, \infty]$. Prove the equivalency with the discrete dyadic form.
6. [Refinability of B-splines] Show that for $r \geq 1$, the univariate B-spline N_{r}, satisfies the two-scale relation

$$
N_{r}(x)=\sum_{k=0}^{r} 2^{1-r}\binom{r}{k} N_{r}(2 x-k), \quad \forall x \in \mathbb{R} .
$$

7. [Nikolskii-type equivalence over convex domains] Prove that for any $n, r \geq 1$ and $0<p, q \leq \infty$, there exist constants of equivalence that depend only on these parameters, such that for any bounded convex domain $\Omega \subset \mathbb{R}^{n}$ and any algebraic polynomial $P \in \Pi_{r-1}\left(\mathbb{R}^{n}\right)$

$$
\|P\|_{L_{q}(\Omega)} \sim|\Omega|^{1 / q-1 / p}\|P\|_{L_{p}(\Omega)} .
$$

Comment: You may use John's Theorem and the equivalence of finite dimensional (quasi) Banach spaces.
8. [Projection onto sinc SI spaces] Let $P_{S(\phi)^{h}}$ be the orthogonal projector onto $S(\phi)^{h}$, where ϕ is the sinc function. Then for $f \in L_{2}\left(\mathbb{R}^{n}\right)$

$$
\left(P_{S(\phi)^{h}} f\right)^{\wedge}(w)=\hat{f}(w) 1_{\left[-h^{-1} \pi, h^{-1} \pi\right]^{]^{\prime}}}(w), \quad h>0 .
$$

Let $\left\{\psi_{I}\right\},\left\{\tilde{\psi}_{I}\right\}, I=(e, j, k), e \in E, j \in \mathbb{Z}, k \in \mathbb{Z}^{n}$, be dual Riesz wavelet bases for $L_{2}\left(\mathbb{R}^{n}\right)$ where:
(i) $\quad \operatorname{supp}\left(\psi^{e}\right), \operatorname{supp}\left(\tilde{\psi}^{e}\right) \subseteq[-M, M]^{n}, e \in E$.
(ii) $\psi^{e}, \tilde{\psi}^{e} \in W_{\infty}^{r}, e \in E, r>\alpha$,
(iii) $\psi^{e}, \tilde{\psi}^{e}, e \in E$, have $r>\alpha$ vanishing moments.
9. Under the above assumptions, Let $F(x)=\sum_{j=1}^{J} c_{I_{j}} \psi_{I_{j}}$, where $\left|c_{I_{j}}\right| \leq L$. Prove

$$
\|F\|_{2} \leq C L J^{1 / 2}
$$

10. [Jackson theorem for Wavelets] Under the above assumptions, let $f \in B_{\tau}^{\alpha}\left(\mathbb{R}^{n}\right), 1 / \tau=\alpha / n+1 / 2$. Denote $\sigma_{N}(f)_{2}:=\inf _{g \in \Sigma_{N}}\|f-g\|_{2}$, where Σ_{N} is the collection of N - term (or less) wavelets. Prove that

$$
\sigma_{N}(f)_{2} \leq c N^{-\alpha / n}|f|_{B_{\tau}^{\alpha}}
$$

Comments:

(i) You may use (9).
(ii) You may use the wavelet characterization

$$
|f|_{B_{\tau}^{\alpha}} \sim \mathcal{N}_{\tau}(f):=\left(\sum_{I}\left|\left\langle f, \tilde{\psi}_{I}\right\rangle\right|^{\tau}\right)^{1 / \tau} .
$$

(iii) You may prove the theorem for a series of 'special cases' of N and add a short explanation on how to generalize to any $N \geq 1$.
11. [Bernstein inequality for piecewise polynomials] Let

$$
\Sigma_{N, r}:=\left\{\sum_{j=0}^{N-1} P_{j} \mathbf{1}_{\left[t_{j}, t_{j+1}\right)}: T=\left\{t_{j}\right\}, 0=t_{0}<t_{1}<\cdots<t_{N}=1, \quad P_{j} \in \Pi_{r-1}\right\} .
$$

Prove that for $\varphi \in \Sigma_{N, r}, \frac{1}{\tau}=\alpha+\frac{1}{p}, 0<\alpha<r$,

$$
|\varphi|_{B_{\tau}^{\alpha}} \leq C N^{\alpha}\|\varphi\|_{L_{p}[0,1]} .
$$

Comment: You may use (7).

Theorems for 30 points

12. [Bernstein for trigonometric polynomials]. Prove that for any univariate real trigonometric polynomial of degree $N, T_{N} \in \Pi_{N}(\mathbb{T})$:
(i) $T_{N}^{\prime}(x)^{2}+N^{2} T_{N}(x)^{2} \leq N^{2}\left\|T_{N}\right\|_{\infty}^{2}, \forall x \in \mathbb{T}$.
(ii) $\left\|T_{N}^{(r)}\right\|_{\infty} \leq N^{r}\left\|T_{N}\right\|_{\infty}, r \geq 1$.
13. [Equivalence of modulus of smoothness K-functional] Let $1 \leq p \leq \infty, r \geq 1$.
(i) Prove that for any $g \in W_{p}^{r}(\mathbb{R})$, we have $\omega_{r}(g, t)_{p} \leq t^{r}|g|_{r, p}, t>0$.
(ii) Prove that for any $f \in L_{p}(\mathbb{R})$, we have $\omega_{r}(f, t)_{p} \leq c K_{r}\left(f, t^{r}\right)_{p}, t>0$.

Comment: You may use the Minkowski integral inequality.
14. [Bramble-Hilbert Lemma for star-shaped domains] Let $\Omega \subset \mathbb{R}^{n}$ be a bounded star-shaped domain with respect to a ball B of radius ρ and let $\gamma:=\operatorname{diam}(\Omega) / \rho$. Prove that for any $g \in C^{r}(\Omega), r \geq 1$, there exists a polynomial $P \in \Pi_{r-1}\left(\mathbb{R}^{n}\right)$, such that for all $1 \leq p<\infty$ and any $0 \leq k \leq r-1$,

$$
|g-P|_{k, p} \leq C(n, r)(1+\gamma)^{n} \operatorname{diam}(\Omega)^{r-k}|g|_{r, k}
$$

Comments: You may use the following:
(i) The bound on the averaged Taylor remainder,
(ii) The commutativity of Taylor polynomials and differentiation with respect to affine transforms,
(iii) The Riesz potential inequality.
15. [Kernel approximation] Assume a kernel operator T, with kernel $K(x, y)$ satisfies for $r \geq 1$
(i) $\quad P(x)=T P(x)=\int_{\mathbb{R}^{n}} K(x, y) P(y) d y, \forall P \in \Pi_{r-1}\left(\mathbb{R}^{n}\right), \forall x \in \mathbb{R}^{n}$.
(ii) $|K(x, y)| \leq c \frac{1}{(1+|x-y|)^{n+r+\varepsilon}}$, for some $\varepsilon>0$ and any $x, y \in \mathbb{R}^{n}$.

Prove that for $f \in C^{r}\left(\mathbb{R}^{n}\right)$

$$
\left\|f-T_{h} f\right\|_{\infty} \leq c h^{r}|f|_{r, \infty}, \quad h>0,
$$

where

$$
T_{h} f(x):=\int_{\mathbb{R}^{n}} K_{h}(x, y) f(y) d y, \quad K_{h}(x, y):=h^{-n} K\left(h^{-1} x, h^{-1} y\right)
$$

Comment: You may use the Taylor remainder estimate

$$
R_{r, x} f(y) \leq c|y-x|^{r} \max _{z \in B(x,|y-x|)} \max _{|\alpha|=r}\left|\partial^{\alpha} f(z)\right| .
$$

16. [Jackson theorem for trigonometric polynomials]. Prove that for any periodic function $f \in L_{p}(\mathbb{T})$, $1 \leq p \leq \infty$, and any $r \geq 1$

$$
E_{N}(f)_{p} \leq C(r) \omega_{r}\left(f, N^{-1}\right)_{p}
$$

where $E_{N}(f)_{p}$ is the degree of approximation by trigonometric polynomials of degree N.
Comment: For the Jackson kernel $J_{N, r}$, you may assume the estimate

$$
\int_{0}^{\pi} t^{k} J_{N, r}(t) d t \leq C(r) N^{-k}, k=0, \ldots, 2 r-2
$$

17. [Spectral approximation order of the sinc] Show that if ϕ is the sinc function, then $\forall r \geq 1, \forall f \in W_{2}^{r}\left(\mathbb{R}^{n}\right)$,

$$
E\left(f, S(\phi)^{h}\right)_{2} \leq C(n, r) h^{r}|f|_{r, 2}
$$

Comment: You may use the result of (8).
18. [Jackson \& Bernstein machinery] Let the sequence $\Phi:=\left\{\Phi_{N}\right\}_{N \geq 0} \subset X$, where X is a Banach space, satisfy
(i) $0 \in \Phi_{N}, \Phi_{0}=0$,
(ii) $\Phi_{N} \subset \Phi_{N+1}$,
(iii) $a \Phi_{N}=\Phi_{N}, \forall a \neq 0$.
(iv) $\Phi_{N}+\Phi_{N} \subset \Phi_{c N}$, for some fixed $c>0$,
(v) $\bigcup_{N} \Phi_{N}$ is dense in X,

We denote $E_{N}(f)_{X}:=\min _{\varphi \in \Phi_{N}}\|f-\varphi\|_{X}$. For $r \geq 1$, let $Y=Y_{r} \subset X$ and assume that the Jackson and Bernstein inequalities hold:
(i) $\quad E_{N}(g)_{X} \leq c N^{-r}|g|_{Y}, \forall g \in Y$,
(ii)

$$
|\varphi|_{Y} \leq c N^{r}\|\varphi\|_{X}, \quad \forall \varphi \in \Phi_{N}
$$

Then prove the characterization of the approximation space for any $0<\alpha<r, 1 \leq q<\infty$,

$$
A_{q}^{\alpha}(X)=(X, Y)_{\alpha / r, q} .
$$

Comments

(i) You may assume X, Y are Banach spaces (not quasi).
(ii) You may use the discrete form of the semi-norms

$$
|f|_{A_{q}^{\alpha}} \sim\left(\sum_{m=0}^{\infty}\left(2^{m \alpha} E_{2^{m}}(f)\right)^{q}\right)^{1 / q}, \quad|f|_{\theta, q} \sim\left(\sum_{m=0}^{\infty}\left(2^{m \theta r} K\left(f, 2^{-m r}\right)\right)^{q}\right)^{1 / q} .
$$

(iii) You may formulate and use the discrete Hardy inequality.

