Foundations of Approximation Theory 2020:

Theorem list for the exam

Theorems for 20 points

- 1. [Hölder Inequality] Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$. Prove:
 - (i) Young's inequality

$$ab \leq \frac{a^p}{p} + \frac{b^{p'}}{p'}, \qquad \frac{1}{p} + \frac{1}{p'} = 1, \ \forall a, b \geq 0.$$

(ii) For $f \in L_p(\Omega), g \in L_{p'}(\Omega)$,

$$\|fg\|_{L_1(\Omega)} \le \|f\|_{L_p(\Omega)} \|g\|_{L_{p'}(\Omega)}$$

- 2. [Summability kernel]
 - (i) Define the properties of a summability kernel over \mathbb{T} .
 - (ii) Prove that for a summability kernel $\{h_N\}$ and $f \in C(\mathbb{T})$,

$$\left\|f-h_{N}*f\right\|_{C(\mathbb{T})}=\max_{-\pi\leq x\leq \pi}\left|f\left(x\right)-h_{N}*f\left(x\right)\right|\underset{N\to\infty}{\longrightarrow}0.$$

3. [Piecewise constant approximation of Sobolev functions] Prove that for $g \in W_p^1(\mathbb{R})$, $1 \le p \le \infty$,

$$E\left(g,S\left(N_{1}\right)^{h}\right)_{p} \leq h \left\|g'\right\|_{p}, \quad h > 0.$$

4. [Piecewise constant approximation of Lip functions] Prove that for $f \in Lip(\alpha)$, $0 < \alpha < 1$,

$$E_{N}(f)_{L_{\infty}([0,1])} \coloneqq \inf_{\phi \in S(N_{1})^{VN}} \left\| f - \phi \right\|_{\infty} \le CN^{-\alpha} \left| f \right|_{Lip(\alpha)}$$

Comments:

- (i) You may use the estimate for $g \in C^{1}[0,1]$, $E_{N}(g)_{\infty} \leq N^{-1}|g|_{1,\infty}$.
- (ii) You may use the equivalence of the modulus of smoothness and K-functional.
- 5. [Discrete Besov norm] Define the integral form of the Besov semi-norm over $[0,\infty]$. Prove the equivalency with the discrete dyadic form.
- 6. [Refinability of B-splines] Show that for $r \ge 1$, the univariate B-spline N_r , satisfies the two-scale relation

$$N_r(x) = \sum_{k=0}^r 2^{1-r} \binom{r}{k} N_r(2x-k), \qquad \forall x \in \mathbb{R}.$$

7. [Nikolskii-type equivalence over convex domains] Prove that for any $n, r \ge 1$ and $0 < p, q \le \infty$, there exist constants of equivalence that depend only on these parameters, such that for any bounded convex domain $\Omega \subset \mathbb{R}^n$ and any algebraic polynomial $P \in \prod_{r=1}^{n} (\mathbb{R}^n)$

$$\left\|P\right\|_{L_{q}(\Omega)} \sim \left|\Omega\right|^{1/q-1/p} \left\|P\right\|_{L_{p}(\Omega)}.$$

Comment: You may use John's Theorem and the equivalence of finite dimensional (quasi) Banach spaces.

8. [Projection onto sinc SI spaces] Let $P_{S(\phi)^h}$ be the orthogonal projector onto $S(\phi)^h$, where ϕ is the sinc function. Then for $f \in L_2(\mathbb{R}^n)$

$$\left(P_{S(\phi)^{h}}f\right)^{(w)} = \hat{f}(w)\mathbf{1}_{\left[-h^{-1}\pi,h^{-1}\pi\right]^{n}}(w), \qquad h > 0.$$

Let $\{\psi_I\}, \{\tilde{\psi}_I\}, I = (e, j, k), e \in E, j \in \mathbb{Z}, k \in \mathbb{Z}^n$, be dual Riesz wavelet bases for $L_2(\mathbb{R}^n)$ where:

- (i) $\operatorname{supp}(\psi^{e}), \operatorname{supp}(\tilde{\psi}^{e}) \subseteq [-M, M]^{n}, e \in E.$
- (ii) $\psi^e, \tilde{\psi}^e \in W^r_{\infty}, e \in E, r > \alpha$,
- (iii) $\psi^e, \tilde{\psi}^e, e \in E$, have $r > \alpha$ vanishing moments.
- 9. Under the above assumptions, Let $F(x) = \sum_{j=1}^{J} c_{I_j} \psi_{I_j}$, where $|c_{I_j}| \le L$. Prove

$$\left\|F\right\|_{2} \leq CLJ^{1/2}$$

10. [Jackson theorem for Wavelets] Under the above assumptions, let $f \in B_{\tau}^{\alpha}(\mathbb{R}^n)$, $1/\tau = \alpha / n + 1/2$. Denote

 $\sigma_N(f)_2 \coloneqq \inf_{g \in \Sigma_N} \|f - g\|_2$, where Σ_N is the collection of N - term (or less) wavelets. Prove that

$$\sigma_N(f)_2 \leq c N^{-\alpha/n} \left| f \right|_{B^{\alpha}_{\tau}}.$$

Comments:

- (i) You may use (9).
- (ii) You may use the wavelet characterization

$$\left|f\right|_{B^{\alpha}_{\tau}} \sim \mathcal{N}_{\tau}(f) \coloneqq \left(\sum_{I} \left|\langle f, \tilde{\psi}_{I} \rangle\right|^{\tau}\right)^{1/\tau}.$$

- (iii) You may prove the theorem for a series of 'special cases' of N and add a short explanation on how to generalize to any $N \ge 1$.
- 11. [Bernstein inequality for piecewise polynomials] Let

$$\Sigma_{N,r} := \left\{ \sum_{j=0}^{N-1} P_j \mathbf{1}_{[t_j, t_{j+1}]} : T = \left\{ t_j \right\}, \ 0 = t_0 < t_1 < \dots < t_N = 1, \quad P_j \in \Pi_{r-1} \right\}.$$

Prove that for $\varphi \in \Sigma_{N,r}$, $\frac{1}{\tau} = \alpha + \frac{1}{p}$, $0 < \alpha < r$,

$$\left|\varphi\right|_{B^{\alpha}_{\tau}} \leq C N^{\alpha} \left\|\varphi\right\|_{L_{p}\left[0,1\right]}$$

Comment: You may use (7).

Theorems for 30 points

- 12. [Bernstein for trigonometric polynomials]. Prove that for any univariate real trigonometric polynomial of degree N, $T_N \in \Pi_N(\mathbb{T})$:
 - (i) $T'_{N}(x)^{2} + N^{2}T_{N}(x)^{2} \leq N^{2} ||T_{N}||_{\infty}^{2}, \forall x \in \mathbb{T}.$ (ii) $||T_{N}^{(r)}||_{\infty} \leq N^{r} ||T_{N}||_{\infty}, r \geq 1.$
- 13. [Equivalence of modulus of smoothness K-functional] Let $1 \le p \le \infty$, $r \ge 1$.
 - (i) Prove that for any $g \in W_p^r(\mathbb{R})$, we have $\omega_r(g,t)_p \le t^r |g|_{r,p}, t > 0$.
 - (ii) Prove that for any $f \in L_p(\mathbb{R})$, we have $\omega_r(f,t)_p \leq cK_r(f,t^r)_p$, t > 0.

Comment: You may use the Minkowski integral inequality.

14. [Bramble-Hilbert Lemma for star-shaped domains] Let $\Omega \subset \mathbb{R}^n$ be a bounded star-shaped domain with respect to a ball *B* of radius ρ and let $\gamma := \operatorname{diam}(\Omega) / \rho$. Prove that for any $g \in C^r(\Omega)$, $r \ge 1$, there exists a polynomial $P \in \prod_{r=1}^{r} (\mathbb{R}^n)$, such that for all $1 \le p < \infty$ and any $0 \le k \le r-1$,

$$\left|g-P\right|_{k,p} \leq C(n,r)(1+\gamma)^n \operatorname{diam}(\Omega)^{r-k} \left|g\right|_{r,k}.$$

Comments: You may use the following:

- (i) The bound on the averaged Taylor remainder,
- (ii) The commutativity of Taylor polynomials and differentiation with respect to affine transforms,
- (iii) The Riesz potential inequality.
- 15. [Kernel approximation] Assume a kernel operator T, with kernel K(x, y) satisfies for $r \ge 1$

(i)
$$P(x) = TP(x) = \int_{\mathbb{R}^n} K(x, y) P(y) dy$$
, $\forall P \in \prod_{r=1} (\mathbb{R}^n)$, $\forall x \in \mathbb{R}^n$.

(ii)
$$|K(x, y)| \le c \frac{1}{(1+|x-y|)^{n+r+\varepsilon}}$$
, for some $\varepsilon > 0$ and any $x, y \in \mathbb{R}^n$

Prove that for $f \in C^r(\mathbb{R}^n)$

$$\left\|f - T_h f\right\|_{\infty} \le ch^r \left|f\right|_{r,\infty}, \quad h > 0$$

where

$$T_h f(x) \coloneqq \int_{\mathbb{R}^n} K_h(x, y) f(y) dy, \qquad K_h(x, y) \coloneqq h^{-n} K(h^{-1}x, h^{-1}y)$$

Comment: You may use the Taylor remainder estimate

$$R_{r,x}f(y) \le c |y-x|^r \max_{z \in B(x,|y-x|)} \max_{|\alpha|=r} |\partial^{\alpha} f(z)|$$

16. [Jackson theorem for trigonometric polynomials]. Prove that for any periodic function $f \in L_p(\mathbb{T})$, $1 \le p \le \infty$, and any $r \ge 1$

$$E_N(f)_p \leq C(r)\omega_r(f, N^{-1})_p,$$

where $E_N(f)_p$ is the degree of approximation by trigonometric polynomials of degree N.

Comment: For the Jackson kernel $J_{N,r}$, you may assume the estimate

$$\int_{0}^{\pi} t^{k} J_{N,r}(t) dt \leq C(r) N^{-k}, \ k = 0, \dots, 2r - 2.$$

17. [Spectral approximation order of the sinc] Show that if ϕ is the sinc function, then $\forall r \ge 1$, $\forall f \in W_2^r(\mathbb{R}^n)$,

$$E\left(f,S\left(\phi\right)^{h}\right)_{2}\leq C\left(n,r\right)h^{r}\left|f\right|_{r,2}.$$

Comment: You may use the result of (8).

18. [Jackson & Bernstein machinery] Let the sequence $\Phi \coloneqq \{\Phi_N\}_{N \ge 0} \subset X$, where X is a Banach space, satisfy

- (i) $0 \in \Phi_N, \Phi_0 = 0$,
- (ii) $\Phi_N \subset \Phi_{N+1}$,
- (iii) $a\Phi_N = \Phi_N$, $\forall a \neq 0$.
- (iv) $\Phi_N + \Phi_N \subset \Phi_{cN}$, for some fixed c > 0,
- (v) $\bigcup_{N} \Phi_{N}$ is dense in X,

We denote $E_N(f)_X := \min_{\varphi \in \Phi_N} ||f - \varphi||_X$. For $r \ge 1$, let $Y = Y_r \subset X$ and assume that the Jackson and Bernstein inequalities hold:

(i)
$$E_N(g)_X \leq cN^{-r}|g|_Y, \quad \forall g \in Y,$$

(ii) $\left|\varphi\right|_{Y} \leq cN^{r} \left\|\varphi\right\|_{X}$, $\forall \varphi \in \Phi_{N}$.

Then prove the characterization of the approximation space for any $0 < \alpha < r$, $1 \le q < \infty$,

$$A_q^{\alpha}(X) = (X,Y)_{\alpha/r,q}.$$

Comments

- (i) You may assume X, Y are Banach spaces (not quasi).
- (ii) You may use the discrete form of the semi-norms

$$\left|f\right|_{A_q^{\alpha}} \sim \left(\sum_{m=0}^{\infty} \left(2^{m\alpha} E_{2^m}\left(f\right)\right)^q\right)^{1/q}, \quad \left|f\right|_{\theta,q} \sim \left(\sum_{m=0}^{\infty} \left(2^{m\theta r} K\left(f, 2^{-mr}\right)\right)^q\right)^{1/q}.$$

(iii) You may formulate and use the discrete Hardy inequality.