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Our goal is to provide a holistic mathematical 
foundation for Artificial Intelligence (AI) which 

includes classic Machine Learning (ML) and Deep 
Learning (DL) through: 

Function space theory & Approximation Theory



Mathematical foundation of signal processing 

● Dataset is 

● The analysis of an image is based on 
the ‘geometry’ of the data: clusters of 
pixels and edges.

● We may use wavelets to decompose 
the pixel data. Wavelets represent 
multi-scale edges.

● We can characterize the performance 
of wavelet image compression by 
Besov smoothness of image (as a 
function). 

● Approximation theory: characterization 
of the performance of 
models/algorithms using function 
space (weak-type) smoothness. 
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● Assume we have a dataset of 𝑛0 × 𝑛0 grayscale images with pixels in [0,255].

● We concatenate the pixel values to vectors of size 𝑛0

● We normalize the pixels values to 0,1

● Each image is associated with one of  𝐿 class labels.

● We map each label to its one-hot-encoding in ℝ𝐿 (0,0, … , 1,0, … 0)

● Thus, each image is now a sample of a function

𝑓0: 0,1
𝑛0 → ℝ𝐿

Function space representation of an image dataset 

MNIST

Hand written digits



Machine Learning vs. Deep Learning

● When do we want to use classic ML vs. DL for classification?

● Is there ‘geometry’ in the feature space?
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ML vs. DL
● Good separability in input feature space → ML
● All successful Machine Learning algorithms look for 

this geometry:
○ Support Vector Machines, Random Forest, Gradient Boosting, 

etc.

● If not, can we transform to a better feature space 
through feature engineering/deep learning (CNN, 
Resnets, Transformers etc)?

[1] UMAP of trained ConvNet on MNIST Dataset - Ben-Shaul, I. and Dekel, S., “Sparsity-Probe: Analysis tool for Deep Learning Models”, <i>arXiv e-prints</i>, 2021.

[2] F. Chollet, Deep Learning with Python, Manning, Nov. 2017.
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Smoothness? Yes! Weak-type smoothness using Besov spaces 
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*I. Ben-Shaul & S. Dekel, Proceedings of machine learning, 2022.

Training better models using this theory! Vision… NLP…



Current state of the art in AI:  Transformers



Current state of the art in AI:  GPT-4



Generative visual models



Here we go…let’s start at the beginning …
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Portrait segmentation - Examples



Portrait segmentation - Examples







Machine Learning – Some basic definitions
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