
Journal of Computational Physics 442 (2021) 110493
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Beyond the Courant-Friedrichs-Lewy condition: Numerical
methods for the wave problem using deep learning

Oded Ovadia ∗, Adar Kahana, Eli Turkel, Shai Dekel

Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv 69978, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 6 June 2021

Keywords:
Numerical methods
Stability
Explicit and implicit schemes
Spatio-temporal
Physically-informed

We investigate a numerical method for approximating the solution of the one dimensional
acoustic wave problem, when violating the numerical stability condition. We use deep
learning to create an explicit non-linear scheme that remains stable for larger time steps
and produces better accuracy than the reference implicit method. The proposed spatio-
temporal neural-network architecture is additionally enhanced during training with a
physically-informed term, adapting it to the physical problem it is approximating and thus
more accurate.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We propose a method to solve the wave propagation problem in a homogeneous domain while violating the stability
conditions. We focus on the one-dimensional problem in the time domain (one spatial and one time coordinate). We set
reflecting boundary conditions (e.g., a string held at both sides). Hyperbolic problems have been investigated by many
authors [1–3] and in many fields, such as fluid dynamics, acoustics, electromagnetic problems, etc. Most studies discuss
solutions that do not involve instabilities. Others focus on calculating a stability condition limit, e.g., if the condition is met,
the solution is numerically stable. We propose a method, based on a physically-informed deep-learning approach, producing
stable solutions, even if the Courant-Friedrichs-Lewy (CFL) stability condition is not met.

When approximating a physical problem numerically one chooses a grid on which the solution will be calculated. When
the number of grid points is immensely large, the amount of calculations might exceed the hardware performance limit
(for example, calculating the propagation of an electromagnetic wave that was sent from a satellite and propagates over
an entire continent with 1 meter precision). On the other hand, facing a difficult problem (high order equation, complex
numerical model, singularities etc.) even a small number of points can be too much to handle. According to the CFL con-
dition, using a fine grid requires also a fine temporal discretization which makes the solution even more complex. For
example:

• Modeling long and large processes, e.g., a cosmic phenomenon that takes years to develop.
• Modeling a very short phenomenon that occurs once in a very large time-span, e.g., a volcanic eruption that takes

minutes but happens randomly once a decade.

* Corresponding author.
E-mail address: odedovadia@mail.tau.ac.il (O. Ovadia).
https://doi.org/10.1016/j.jcp.2021.110493
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110493
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110493&domain=pdf
mailto:odedovadia@mail.tau.ac.il
https://doi.org/10.1016/j.jcp.2021.110493

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
• Modeling a wave problem with a very large propagation speed, e.g., a shock wave hitting a rod.

We model the propagation of underwater acoustic waves by the acoustic wave equation [13,14,4] with parameters
of the medium (such as wave propagation velocity, boundary conditions etc.). We numerically approximate the solu-
tion using a simple central difference Finite-Difference (FD) scheme in both space and time (2). The CFL condition is a
necessary condition for the stability of this method [6], fixing a ratio between the spatial and temporal discretization
sizes. When the CFL condition is not met, the numeric solution explodes, resulting in an exponentially growing error
over time. The larger the space stencil the larger is the allowed time step. However, using a compact stencil limits the
time step. It is possible to violate the CFL condition by using properties of the specific system to be solved. For ex-
ample, Turkel and Zwas [11] use coarse mesh information for the shallow water equations. Liu and Dong [12], based
on previous work, use a wave splitting for conservation laws. We shall consider the acoustic wave equation using only
standard finite difference schemes. Future work will extend it to other wave-like equations e.g. elasticity and electromag-
netics.

In an attempt to develop a numerically stable scheme while violating the CFL condition, we train a neural-network to
learn the elements of the scheme. We generate solutions synthetically from randomly chosen initial conditions using a
stable scheme and sub-sample the solutions in such a way that they are unstable (the CFL condition is not satisfied). These
sub-samples are the training set for the neural-network which is then tested on different synthetically generated unstable
problems. Although the training part takes hours, using the non-linear scheme produced by the network takes milliseconds.
In addition, other explicit numerical methods cannot produce a solution under violation of the CFL condition while the
proposed method does. Therefore, we compare the solution to both an explicit and an implicit method. We also compare
the method for a wave problem with a simple analytic solution, measuring the difference between the method and the
analytic solutions over time to check the methods performance over many time steps.

We improve the method by adding a physically-informed [7,8] loss element to the neural network during training. We
exploit the fact that the network solves the acoustic wave problem, and create a loss term that compares the network’s
learned solution with another solution produced by the FD approximation. This makes the network physically aware of the
problem it is trying to approximate and therefore ensures better convergence resulting in higher precision of the numerical
method.

The outline for the remainder of this paper is as follows. Section 3 discusses the physical problem and the mathematical
formulation used to model the problem. Section 4 reviews key aspects of learning methods and present the deep-learning
model used. Section 5 presents the numerical experiments conducted and the findings using the proposed methods. Con-
cluding remarks are found in section 6.

2. Background

Given a system of differential equations there exists two different approaches for approximating the solution for the
system - explicit and implicit methods [9,10]. Implicit methods usually require large computational effort. Explicit methods
are conditionally stable, meaning that if the stability condition is not satisfied the solution explodes.

Some studies focus on developing conditionally-stable explicit methods with less limiting conditions. Some methods
introduce relaxation coefficients, while others use augmentation of the problem to create a dual condition that is less
demanding [17]. These methods usually have lower accuracy compared to the implicit models, but they are able to solve
problems that implicit solvers cannot due to the lower computational effort. Usually, these methods are tailored to the
physical problem they are trying to approximate (in terms of the parameters and even the algorithm that defines the
method).

A common issue with numerical methods is that the higher the accuracy we require, the higher the computational effort
we need. This trade-off is a main concern when developing a numerical method, and it motivates researchers to search for
either finding the most accurate solution or the most efficient solution. There are several studies that try to find a model
that will be sufficiently accurate and the least complex for a given problem. However, there is no perfect model that is both
high-order, accurate and efficient and also suitable for every problem.

We propose an explicit method that is more accurate than most implicit methods for large time steps. The approach is
to create a neural-network and train it with different solutions for PDEs so that the network can learn a numerical method.
The weights of the network represent the coefficients of the method, and after training is done and the coefficients are
learned, we use the network to predict the later state of the system based on the previous ones which makes it an explicit
method. Although training is a complex procedure, it is only done once and using the trained model is a very efficient
procedure. We compare the performance of this method to an implicit method in terms of accuracy over time, and observe
promising results.

The field of machine learning is growing very rapidly and many other data-driven fields use methods in machine learning
to approximate models. Specifically, in numerical analysis, the use of physically-informed neural-networks [7] is growing.
Such methods make the network physically aware of the problem it is solving. Here, we demonstrate another use of the
physically-informed idea - constructing a loss function for the network that is based on the wave problem. We have achieved
improved results using such a method.
2

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Fig. 1. Approximation of a solution to the wave problem after 10 iterations using the FD method with different CFL numbers.

3. Numerical modeling

3.1. Mathematical model

The general formulation of the wave problem is given by -⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ü(
−→x , t) = ∇ · (c2(

−→x)∇u(
−→x , t)) −→x ∈ �, t ∈ (0, T],

u(
−→x ,0) = u0(

−→x)
−→x ∈ �,

u̇(
−→x ,0) = v0(

−→x)
−→x ∈ �,

u(
−→x , t) = f (−→x , t) −→x ∈ ∂�1, t ∈ [0, T],

∇u(
−→x , t) = g(

−→x , t) −→x ∈ ∂�2, t ∈ [0, T], ∂�1 ∪ ∂�2 = ∂�,

(1)

where u(
−→x , t) is the wave amplitude or acoustic pressure, c is the wave propagation speed, u0 and v0 are the initial

pressures and velocities respectively, and f and g are boundary condition of types Dirichlet and Neumann respectively. In
this work we investigate the one-dimensional case. Therefore, throughout the paper x is treated as a scalar so x ∈ � = [a, b].
We also assume that c is constant. The specific system we solve is given in section 5.1 by (5). Problem (1) is well-posed and
thus small changes in the problem conditions result in small changes in the solution and there exists a unique continuous
solution to the problem inside the domain.

3.2. Numerical approximation methods

We approximate the spatial domain � using Nx nodes. We also approximate the temporal direction [0, T] using Nt

nodes. Both are uniform divisions. We denote �x and �t as the grid spacing. We use the notation un
i for the solution at

point (i · �x, n · �t) where i = 0, ...Nx − 1 and n = 0, ...Nt − 1. A commonly used method to approximate the solution is the
FD method [5]. We use it to approximate both in time and space as follows:

un+1
i − 2un

i + un−1
i

�t2
= c2

(
un

i+1 − 2un
i + un

i−1

�x2

)
. (2)

3.3. Numerical stability

Denote α = c �t
�x . This is the Courant-Friedrichs-Lewy (CFL) number. The CFL criterion α = c �t

�x ≤ 1 is a necessary and
sufficient condition for the convergence of FD method [6]. When we choose a grid (selection of Nx, Nt, �x and �t) that
does not satisfy the CFL condition, α > 1, after a few iterations in time the solution “blows up” as shown in Fig. 1.

3.4. The data-driven problem

We formulate the computational problem as a supervised-learning problem. In supervised learning, each sample has a
label and a chosen learning algorithm learns the connection between each data sample and its label. Typically in deep
learning, the size of the training set is large. This allows the model to learn how to generalize to unseen samples with
3

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
sufficient accuracy. In addition, designing the right architecture of the machine learning model to fit the physical nature of
the problem has a significant impact on the performance.

We create the data-set by generating random initial conditions from a truncated orthonormal basis in L2(�). In addition,
this space is large enough to choose many initial conditions with a high variance between them. A specific choice of basis
functions is given in section 5.1.

We use a truncated Taylor series at t = 0 to approximate the second time step:

u(x,0 + �t) ≈ u(x,0) + �tut(x,0) + �t2

2
utt(x,0).

Substituting the initial condition for the pressure (u0 in (1)):

u(x,0 + �t) ≈ u0(x) + �tv0(x) + (�t)2

2
c2uxx(x,0).

Substituting v0(x) ≡ 0 and switching notation we get a formula for u1:

u1
i = u0

i + �t2

2
c2 u0

i+1 − 2u0
i + u0

i−1

�x2
∀i = 0, ..., Nx.

To ease the notation, consider the vector:

un =

⎛
⎜⎜⎜⎝

u(x0, tn)

u(x1, tn)
...

u(xNx , tn)

⎞
⎟⎟⎟⎠ ,

so un denotes the solution at time tn over the entire spatial grid.
We use the FD method to create the data samples. Unfortunately, violation of the CFL condition results in an unstable

solution. Therefore, we create the data using a fine grid, e.g., using �t
m where m is a natural number larger than 1. We

then choose only each mth sample. The data set includes input samples with u(n−1)m and unm and labels u(n+1)m for a
randomly chosen n = 0, ..., Nt

m (using a randomly generated initial condition). We want the learning algorithm to train a
non-linear scheme û(n+1)m = S(u(n−1)m, unm) ≈ u(n+1)m that explicitly approximates the solution such that the coarse time
discretization (using �t) does not satisfy the CFL condition.

4. Deep learning approach

We use a deep-learning approach to solve the data-driven problem described in section 3.4. Specifically, we train a
neural-network composed of convolutional and fully connected (FC or dense) layers whose coefficients (weights and bias
terms) are initially unknown. After each layer we use a component-wise non-linear activation. To learn the coefficients we
iterate using the Stochastic Gradient Descent (SGD) algorithm to minimize a predefined target function. We experimented
with many network architectures (number and sizes of convolution and dense layers) until we obtained one that has good
convergence of the SGD algorithm, resulting in good accuracy for the solution of the samples in a predefined testing set.

The fully connected layers try to learn all the connections between the input of the layer and its output using matrix
multiplication by unknown weights. For an input matrix A of size Ntrain × N f eatures (number of training samples times the
number of numerical values representing each sample, i.e., features) and an unknown matrix W of size N f eatures × Nlayersize
the layer output is L(A) = W · A + b where b is a bias vector of unknown weights as well. The unknown elements are then
approximated during the training process using the SGD method, with respect to a target function.

The convolution layers try to learn local patterns in the data. They consist of a set of filters of unknown weights wi .
Convolving the input of the layer with each of the filters produces the feature map of the layer: L(A)i = wi ∗ A + b. The
filter weights are also computed by the training process using the SGD algorithm similar the fully connected layer weights.
The difference between the fully connected and the convolutional layers is finding global connections versus local patterns.

After designing the network architecture (number of layers, type and size of each layer etc.) we use a gradient de-
scent algorithm to determine all the weights. We define a loss (target) function (specified in sections 4.1 and 4.3 which
the SGD algorithm tries to minimize with respect to all the weights. If the network is designed correctly, the gradient de-
scent algorithm converges. Therefore, after a certain number of iterations (called epochs) we expect the network model,
with its set of discovered weights, to make an accurate prediction û(n+1)m for u(n+1)m , from unseen testing data (u(n−1)m

and unm).
During the training phase, we use a validation set consisting of samples that are not in the training set. The validation

set is similar to the testing set. The difference is that we do not allow using the testing set during the training step. The
validation set is used during the training of the model for monitoring the prediction accuracy over samples that are not
in the training set. If the metrics show that the loss value of the training samples keeps decreasing but the validation loss
4

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Table 1
Network layers types, sizes and number of weights.

Layer type Number of weights Number of biases Activation Layer output shape Number of activation weights

Convolution 32 16 PReLU Nx × 1 × 16 8016
Convolution 6,144 128 PReLU Nx × 128 64,128
Convolution 16,384 128 PReLU Nx × 128 64,128
Convolution 128 1 - Nx × 1 0
Dense 251,001 501 - Nx 0

Fig. 2. The network architecture.

increases, the model is over-fitting the training data. This means that the model will accurately predict the training data
but will fail with new samples, losing the ability to generalize. We terminate the training phase before the model over-fits.

Finally, using the trained model we test its ability to make predictions on a testing data-set. The samples chosen for
testing are different from the training and validation samples. We examine the performance of the network on this testing
set as shown in section 4.4.

4.1. Network architecture

We use a spatio-temporal network architecture. Recall that the data-set is formed using solutions of the wave problem
that are dependent on space and time. We design the network accordingly, so that the first layers learn the temporal
elements of the data and the layers that come after learn the spatial elements. This architecture outperformed all other
architectures. We first use a convolution layer to learn the time elements between the two input vectors. We use 16 filters
of size 2 for this layer to extract only the temporal information. Afterwards, we reshape the output and use two convolution
layers with 128 filters of size 3 and 1 followed by a convolution layer with 1 filter of size 1. These learn the local spatial
connections in the data. The architecture design of the network concludes with a dense layer. Table 1 presents the types of
the layers, sizes and number of weights. Fig. 2 presents a sketch of the network architecture.

The loss (target) function we use for training the network is the Mean Squared Error (MSE). We define M S Ek,(n+1)m =
1

Nx

∑Nx
i=1

(
û(n+1)m

i − u(n+1)m
i

)2
for each randomly generated initial condition where 1 ≤ k ≤ Nic and Nic is the number of

initial conditions used to create the training set. The MSE loss is then m
Nic Nt

∑Nic
k=1

∑ Nt
m

n=1 M S Ek,(n+1)m . Low MSE means that
the predictions are close to the true values. The gradient descent algorithm tries to minimize the MSE with respect to the
weights of the network.

4.2. Activation function

Most layers are followed by non-linear activation functions. The non-linearity provides an infrastructure for the network
to act as a more powerful approximation algorithm. We use a rectifier function called Parametric Rectified Linear Unit
(PReLU, [18]). The PReLU activation is defined as follows:

f (x) =
{

ax, x < 0

x, else
(3)
5

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Fig. 3. Comparison of activation functions validation losses over the first 100 epochs in log-scale.

where a is a learned array with the same shape as x. The PReLU function adjusts the output in a way that is learned through
the training phase and is not necessarily linear.

We experimented with the adaptive activation functions, developed by Jagtap et al. [19], [20]. This class of optimized
adaptive activation functions (global, layer-wise, and neuron-wise) aims to accelerate the loss convergence rate. Fig. 3
presents the validation losses of two neuron-wise-like locally adaptive activation functions, compared to a non-adaptive
ReLU activation function. Observe that both adaptive activation functions outperform ReLU. We tested both global and
layer-wise adaptive activation functions, which resulted in significantly slower convergence compared to their neuron-wise
counterparts and thus are not shown in the figure. The PReLU activation converged to the lowest local minimum (compared
to the other activation functions). Therefore, we used PReLU (3) for the results in the remaining paper.

4.3. Physically-informed loss

We propose to enhance to the network described above by adding a loss term that makes the network “aware” of the
specific physical problem it is trying to solve. We recall that the training dataset was formed by using a FD scheme with
a fine spatial discretization and picking a subset of every mth step. We exploit this knowledge to construct a physically-
informed loss term. During the training phase, the network uses gradient descent to minimize the physically-informed loss
and is expected to perform better with the additional knowledge of the problem.

When training the model with the physically-informed loss we first create the training data-set differently. The input-
output mapping remains the same, but we also add u(n+1)m+1 as an auxiliary term. Hence, when training the model, the
true values of u(n+1)m and u(n+1)m+1 are usable inside the loss function. We remark that the output of the network remains
just û(n+1)m; we achieve this by designing an architecture where the last layer outputs a single vector and the loss terms
handle two vectors. A sketch of the physically-informed loss calculation process is given in Fig. 4.

In each step of the training session, when calculating the loss for each training sample, we have access to the true values
of the vectors u(n−1)m, unm, u(n+1)m and u(n+1)m+1. We first use u(n−1)m and unm to predict u(n+1)m as shown above and we

denote û(n+1)m as the predicted value. We calculate the MSE and set lM S E = m
Nic Nt

∑Nic
k=1

∑ Nt
m

n=1 M S Ek,(n+1)m . We then use
the FD method to calculate u(n+1)m+2 = F D(u(n+1)m, u(n+1)m+1) and û(n+1)m+2 = F D(û(n+1)m, u(n+1)m+1). We can apply the
FD method j times to get u(n+1)m+ j and û(n+1)m+ j such that 2 ≤ j ≤ m. We then calculate the MSE between these vectors

and set lP I = m
Nic Nt

∑Nic
k=1

∑ Nt
m

n=1 M S Ek,(n+1)m+ j . The combined loss term we use is then loss = lM S E + lP I . Note, that the case
j = 1 is equivalent to calculating lM S E :

∀i = 1, ..., Nx, k = 1, ..., Nic : u(n+1)m+2
i − û(n+1)m+2

i = F D(u(n+1)m
i , u(n+1)m+1

i) − F D(û(n+1)m
i , u(n+1)m+1

i) =

������
2 · u(n+1)m+1

i − u(n+1)m
i + ���������������

c2 · �t2

2

(
u(n+1)m+1

i+1 − 2 · u(n+1)m+1
i + u(n+1)m+1

i−1

)
−

������x

6

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Fig. 4. Physically-informed loss calculation process.

−
⎛
⎝������

2 · u(n+1)m+1
i − û(n+1)m

i +
��������������������

c2 · �t2

�x2

(
u(n+1)m+1

i+1 − 2 · u(n+1)m+1
i + u(n+1)m+1

i−1

)⎞
⎠ =

u(n+1)m
i − û(n+1)m

i .

Therefore, we get M S Ek,(n+1)m+2 = ∑Nx
i=1

(
û(n+1)m+2

i − u(n+1)m+2
i

)2 = ∑Nx
i=1

(
û(n+1)m

i − u(n+1)m
i

)2 = M S Ek,(n+1)m . We tested
several choices for j and found that the choice of j = m performed the best. When choosing j = m, we compute using the
FD method, all of the time steps (n + 1)m + 2, ..., (n + 2)m and therefore we penalize their accumulated loss. The results for
this method are given in section 5.2.

A concern when using this method is that initially (at the first stages of the training step) the network produces poor
predictions for û(n+1)m , confusing the FD that might deny the networks convergence. To solve this issue, we start training
the network with only the MSE loss term and later apply the additional physically-informed term. This way we let the
network learn the problem first so it could make relatively accurate predictions for û(n+1)m and use them in the physically
loss term. Results show that after switching to the physically-informed loss, the calculated MSE loss drops 10 times lower.

The physically-informed loss term uses the FD method (2) and thus is clearly a differentiable loss in its input of two
time step vectors. This enables the application of the automatic differentiation mechanism of Keras [16] for the gradient
descent method.

4.4. Model evaluation

There are several methods to evaluate the performance of the trained model. The model predicts the solution of the
PDE so we chose to use comparison methods that are commonly used for evaluating numerical schemes. We first define an
initial condition which is a linear combination of sine functions, such that we can calculate its analytic solution over time.
We can then compare the numerical methods to the analytic solution.

The numerical methods we used for comparison are the trained models (with and without the physically-informed
loss term) and an implicit method (Crank-Nicolson) [9,10]. In this work we solve only a one dimensional problem so we
could calculate with a small �t and so we show the finer version along with the other comparisons. Note, the fine FD
discretization gives much better results. However, with a small �t , in a real problem it is expensive to calculate the FD
iterations. We compare the methods over time using the norm:

∀n = 0, ...,
Nt

m
∀k = 0, ..., Nic

Ek,(n+1)m =

√∑Nx
i=0

∣∣∣u(n+1)m
i − ũ(n+1)m

i

∣∣∣2

√∑Nx
i=0

∣∣∣u(n+1)m
i

∣∣∣2
(4)

where ũ is the solution produced by the compared method.
Two evaluations are of interest:

• Single-step prediction: We use the true values of u(n−1)m and unm to predict u(n+1)m . We calculate Ek,(n+1)m as in (4)
for each sample in the testing set (varying initial condition and time stamps). We average the error over all time steps

to obtain E = m
Nic Nt

∑Ni c
k=1

∑ Nt
m

n=1 Ek,(n+1)m and compare this error term between all methods. A smaller average means
results closer to the analytic solution.
7

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Fig. 5. 5 Randomly sampled initial conditions that were created for the data-set.

• Multi-step prediction: We start by using u0 and um to predict û2m . We use um and the predicted û2m to predict û3m . In
general, we use û(n−1)m and ûnm to predict û(n+1)m . We compare the accumulative error over time between all methods.

For each initial condition we calculate Ek = m
Nt

∑ Nt
m

n=1 Ek,(n+1)m from the multi-step predictions. We then take the mean
of all Ek in the testing set (Mean of Ek in Table 3). In addition, we calculate the maximal and median of values of
Ek,(n+1)m over m and average them over k. Smaller metrics (mean, maximum and median) mean results closer to the
analytic solution.

5. Numerical tests and results

5.1. Experiment setup

We tested the method on problem (1) setting � = [0, 1], T = 1, c = 7 and v0(x) = 0. Problem (1) then becomes:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ü(x, t) = c2uxx(x, t) 0 ≤ x ≤ 1, 0 ≤ t ≤ T ,

u(x,0) = u0(x) 0 ≤ x ≤ 1,

u̇(x,0) = 0 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0 0 ≤ t ≤ T .

(5)

For the numerical grid we chose Nt = 4000 and Nx = 500 on the domain [0, 1]. For these conditions the CFL number is:

α = c
�t

�x
= 7 ×

1
400

1
500

= 8.75 > 1,

which violates the CFL condition. Multiplying �t by m = 10 we get a CFL number of 0.875 which satisfies the stability
condition.

The orthonormal basis functions we use are {sin(πkx)}20
k=1. We use these basis functions to create the initial conditions

that form the training, validation and testing data-sets. Each initial condition is a linear combination of the basis func-
tions

∑20
n=1 ansin(πnx). The coefficients are randomly generated and satisfy

∑20
n=1 |an|2 = 1. Fig. 5 presents 5 examples of

randomly generated initial conditions.
We generate 1, 250 initial conditions and use the FD method with the fine discretization (m�t) as described in sec-

tion 3.4 to create the data-set consisting of 1, 250 · 397 = 496, 250 samples. Each sample is of the form:

Input : (un−10, un) → Label : (un+10, un+11), n = 10,20, ...,3980

The samples are split into training, validation and testing sets with ratios of 80%, 10% and 10% respectively (total size of
5 GB of data). The stochastic gradient descent optimizer we used is the ADAM optimizer [15] with batch size of 16 and the
8

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Table 2
Single-step comparison of the various methods over the testing data.

Method E

Model trained without physically-informed component 0.012139
Model trained with physically-informed component 0.012067
Explicit FD 0.012091
Implicit 1.23709

Fig. 6. Error over time comparing four different approximation methods.

code was written using Keras [16]. We trained for 50 epochs without the MSE loss term and 350 more with the combined
(MSE and physically-informed) loss term. The model was saved based on best performance on the validation set. We used a
nVidia Tesla T4 GPU to train the model for approximately 2 days. The trained model size is approximately 5 MB. This model
is used for the following calculations.

5.2. Results

We compare the performance of the method as discussed in section 4.4. The evaluations are performed on the testing
set (which does not include samples from the training or validation sets). The single-step prediction average errors are
shown in Table 2. As shown in the table, the model performs better than the implicit method. Recall that the FD method
is calculated using the fine discretization �t

m . It is used only as a reference solution (with coarse discretization �t the error
“blows up”).

The training set used for training the model contains solutions computed using the finite-difference method. We observe
that the errors of the model (with and without the physically-informed component) and the explicit finite-differences
method are similar, which shows that the model trained well for the single step prediction. Using the model for multi-step
prediction is different since it is not what the model was trained for, and therefore it is a more difficult task. We expect
the error values to vary between the methods and showcase the contribution of the physically-informed component in the
multi-step results.

The multi-step prediction over time error for a specific initial condition is given in Fig. 6. The FD result is shown for
reference. We observe that although the implicit method remains stable, the error is much larger than the one of the
model. In addition, the improvement of the physically-informed element is clear from the figure. The best performance for
this initial condition is by using the neural-network model with the physically-informed loss term. We tested the model
with several different initial conditions constructed using the defined basis functions and achieved the same result. The
error over time is oscillatory due to the nature of the sine functions we used to create the data.

The multi-step metrics discussed in section 4.4 are given in Table 3. We observe higher error values due to the accumu-
lative error in the multi-step process. As explained in 4.4, the explicit method is calculated with a finer time discretization
and the performance is better as expected, it is shown only for reference. The model with the physically-informed loss term
is performing the best.
9

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Table 3
Multi-step comparison of the various methods over the testing data.

Method Mean of E Mean of max(Eic(tn)) Mean of median(Eic(tn))

Model trained without physically-informed component 0.197140 0.665867 0.153857
Model trained with physically-informed component 0.021158 0.062016 0.018769
Explicit FD 0.011912 0.036059 0.010889
Implicit 1.122231 1.791727 1.155944

Fig. 7. Error over time comparing the implicit method and the model with physically-informed term, with an initial condition of the type (6).

5.3. Generalization

Using sines as basis functions for training and testing the model raises the question whether the model can perform well
given an initial condition that was not formed using a finite linear combination of sine functions. We explore the ability of
the model to generalize - predict solutions of initial conditions it was not trained on with high accuracy. We define a set of
testing random initial conditions using:

u(x,0) =
20∑

k=1

ake−(x−bk)
2+ck sin(πkx), (6)

where
∑20

k=1 |ak|2 = ∑20
k=1 |bk|2 = ∑20

k=1 |ck|2 = 1, ak, bk, ck ∈ [−1, 1] are generated randomly. Using separation of variables,
we find the analytic solution of the wave problem given such an initial condition by finding its Fourier coefficients. The
coefficients are calculated using:

Al =
1∫

0

⎛
⎝ 20∑

j=1

a je
−(x−b j)

2+c j sin(π jx)sin(π lx)

⎞
⎠dx, ∀l : Al �= 0 almost surely,

and the solution is given by:

u(x, t) =
∞∑

l=1

Alsin(π lx)cos(cπ lt).

We compare the methods to the explicit FD approximation. We calculate the norms as in (4.4) but with the fine FD ap-
proximation instead of the analytic solution. We compare the model with and without the physically-informed component
and the implicit method in terms of multi-step prediction performance as defined in section 4.4. An example for the error
over time for a randomly generated initial condition as in (6) is given in Fig. 7. Table 4 presents the metrics discussed in
section 4.4 for a testing set generated with initial conditions as in (6).
10

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Table 4
Multi-step comparison of the various methods over the testing data.

Method Mean Ek Mean maxn(Ek,(n+1)m) Mean mediann(Ek,(n+1)m)

Model trained without physically-informed component 0.175957 0.597869 0.145254
Model trained with physically-informed component 0.049573 0.104450 0.048273
Implicit 1.131291 2.050409 1.149680

5.4. Stiff source terms

Up to this point, we have demonstrated the capabilities of our model in scenarios with highly smooth initial conditions
which were resolved faithfully by the simulation parameters. However, real life problems in fields such as computational
fluid dynamics or underwater acoustics often operate under different sets of simulation parameters that face other numerical
difficulties which are not directly related to the CFL condition. One such obstacle is the inclusion of a stiff source term.

Consider equation (5). We transform it into an inhomogeneous wave equation by introducing a source term s(x, t):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ü(x, t) = c2uxx(x, t) + s(x, t) 0 ≤ x ≤ 1, 0 ≤ t ≤ T ,

u(x,0) = u0(x) 0 ≤ x ≤ 1,

u̇(x,0) = 0 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0 0 ≤ t ≤ T .

(7)

The inclusion of a source term does not constitute a problem in and of itself. However, by choosing a source term
whose behavior requires finer simulation discretization than the other components of the equation we might encounter the
phenomenon of stiffness, and consequently get inaccurate results.

We add a source function with the following form:

s(x, t) =
{

Asin(rcπt)sin(πx), t ∈ [t′, t′′]
0, else

(8)

where r ∈N, A ∈R, and 0 ≤ t′ < t′′ ≤ T .
Using the same initial conditions as in 5.1, we get the following analytic solution:

u(x, t) =
{

uh(x, t) + A (−r cos (cπt)−sin (cπrt)) sin (πx)
c2π2

(
r2−1

) , t ∈ [t′, t′′]
uh(x, t), else

(9)

where uh(x, t) is the analytic solution of the homogeneous problem (5).
The spatial oscillations of (9) are roughly of the same order of magnitude as those of the initial condition. However,

the temporal oscillations are dependent on r. Hence, by choosing r to be larger than the temporal oscillations of the
homogeneous analytic solution, we might encounter stiffness. Note that A must be at least the same order of magnitude as
r2 in order to offset the division by r2 − 1 in (9); otherwise we’d get an insignificant contribution to the analytic solution.
Lastly, we chose t′ and t′′ at which the term added due to the inclusion of a source in (9) zeros out to avoid discontinuities,
and clearly see the influence of a stiff source.

In our computation we chose: r = 100, A = 10, 000 and [t′, t′′] = [0.5, 1]. We also increased the propagation time to
T = 2 to observe the model’s accuracy after the end of the pulse. Consequently, we doubled Nt to keep the CFL number the
same as in 5.1.

In Fig. 8 we see the highly oscillatory behavior of the source function, and the discrepancy between its values and
those of the initial conditions Fig. 5. Due to insufficient sampling, we miss important aspects that affect the values of the
numerical solution. The consequences of this problem are evident in Fig. 9. Both the FD method and the model perform well,
until a noticeable jump that occurs at t = 0.5, which is the beginning of the pulse of the source function. However, there
is one major difference between the model’s performance and that of the FD method. In the FD method, the stiffness in
[0.5, 1] leaves a lingering effect on future simulations after t = 1. This is in stark contrast to the model’s error, where there’s
a small “bump” around the pulse area, after which it recovers without accumulating. Once more we see that the physically
informed loss adds a valuable contribution to our model. We also tested the implicit Crank-Nicolson with a CFL number of
approximately 1.5. It remained stable, but the results were highly inaccurate. Consequently, the large error dominated the
plot scaling, and thus we excluded it from Fig. 9.

6. Conclusion

In this work we introduced a method to solve PDEs explicitly while violating of the CFL condition. We used deep-learning
to overcome the stability issue such that the trained neural network is used as an explicit numerical scheme. Additionally,
11

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Fig. 8. The source s(x, t) at x = 0.25.

Fig. 9. Error over time comparing the explicit FD method with Nt = 8,000 and the model with Nt = 800. All simulations have the same source term (8).

we improved the method by training the model with a physically-informed loss term that makes the network aware of the
physical problem it is trying to approximate. We tested the model on the one dimensional wave equation and examined
the results. We observed better accuracy than the reference implicit model while preserving the fast calculation times. The
presented approach can be used for many other PDE related problems.

We plan on expanding the model to more difficult problems. For example, stiff problems with both large and small
physical processes such as the weather equations that model both wind propagation (low propagation speed) and influence
of acoustic waves on the wind (high propagation speed) on the same grid. We also intend to check the robustness of the
model with respect to noise in the data and develop accurate models in the presence of noise. Also, further research will
be done on making the network more physically aware (in addition to the physically-informed loss term). For example,
designing network layers that mimic the state-of-the-art numerical schemes while including a set of learned weights to
optimize for the specific data-set used.

CRediT authorship contribution statement

Oded Ovadia: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing – original draft, Writing –
review & editing. Adar Kahana: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing – original
draft, Writing – review & editing. Eli Turkel: Conceptualization, Methodology, Supervision. Shai Dekel: Conceptualization,
Methodology, Supervision.
12

O. Ovadia, A. Kahana, E. Turkel et al. Journal of Computational Physics 442 (2021) 110493
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] R. Abgrall, C.W. Shu, Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, 1st edition, North Holland, 2016.
[2] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, 2002.
[3] B. Gustafsson, H.O. Kreiss, J. Oliger, Time-Dependent Problems and Difference Methods, 2nd edition, Pure and Applied Mathematics, Wiley, 2013.
[4] A. Kahana, E. Turkel, D. Givoli, Convective wave equation and time reversal process for source refocusing, J. Comput. Acoust. 26 (02) (2018) 1850016.
[5] D. Richtmeyer, K.W. Morton, Difference Methods for Initial Value Problems, 2nd edition, Wiley, New York, 1967.
[6] R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928) 32–74.
[7] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (686–707) (2019).
[8] A. Kahana, E. Turkel, S. Dekel, D. Givoli, Obstacle segmentation based on the wave equation and deep learning, J. Comput. Phys. 413 (2019).
[9] U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (2–3)

(1997).
[10] L. Pareschi, G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, Recent Trends Numer. Anal. 3 (269–289) (2000).
[11] E. Turkel, G. Zwas, Explicit large time step schemes for the shallow water equations, in: Advances in Computer Methods for Partial Differential Equa-

tions III, 1979, pp. 65–69.
[12] F.J. Liu, H.T. Dong, Second-order large time step wave adding scheme for hyperbolic conservation laws, J. Comput. Phys. 408 (2020) 1–36.
[13] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.
[14] J. Jost, Partial Differential Equations, Springer-Verlag, New York, 2002.
[15] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412 .6980, 2014.
[16] F. Chollet, Keras, https://keras .io/.
[17] N.J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 1996, xxxviii (595-663).
[18] H. Kaiming, Z. Xiangyu, R. Shaoqing, S. Jian, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, arXiv:1502 .

01852.
[19] A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, J.

Comput. Phys. 404 (2019).
[20] A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks,

Proc. R. Soc. A 476 (2020).
13

http://refhub.elsevier.com/S0021-9991(21)00388-0/bibC25F010F6F1E683BAE4D396138563FFEs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibF7044B465C866FB9E0811C33EE77F299s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib56EF01D448E6B21377D7B5798972358Ds1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib24D84DB7C404F4CA3654296B4D31D182s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib3725F0A57E99A7FA189F5B1AEF8C5EB0s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib1FDD42568DD24B0DEE641C1CF40C9CAFs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib1FDD42568DD24B0DEE641C1CF40C9CAFs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib585307E0AD4646FCA1851C4715D1956As1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibD92FA2BF405828BD46A83FF2C3DEB26Bs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibD92FA2BF405828BD46A83FF2C3DEB26Bs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib666D16429BCF7EA14447055B2F3B86C3s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibC36FF3C3488A051AD2B3C6F6A10DCC68s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibC36FF3C3488A051AD2B3C6F6A10DCC68s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibC36037D5C77D75517ADB514821974BBEs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib29549B8791C11D20E7687837A374DF84s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib15FBEBB434000A9D7A8EEF61222D4A46s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib333D749A7EFFAA4922BB5F4FB130A2FFs1
https://keras.io/
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibE05D25DFC0ED6E9D9994C5DD6754094Es1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib837C39F77D473B24EB27C0758D5C7C1Bs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bib837C39F77D473B24EB27C0758D5C7C1Bs1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibE716662E6EF5C38429B81A74BB4F6BF3s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibE716662E6EF5C38429B81A74BB4F6BF3s1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibB4A1A8CA780F680E88A925B6F7CD312Ds1
http://refhub.elsevier.com/S0021-9991(21)00388-0/bibB4A1A8CA780F680E88A925B6F7CD312Ds1

	Beyond the Courant-Friedrichs-Lewy condition: Numerical methods for the wave problem using deep learning
	1 Introduction
	2 Background
	3 Numerical modeling
	3.1 Mathematical model
	3.2 Numerical approximation methods
	3.3 Numerical stability
	3.4 The data-driven problem

	4 Deep learning approach
	4.1 Network architecture
	4.2 Activation function
	4.3 Physically-informed loss
	4.4 Model evaluation

	5 Numerical tests and results
	5.1 Experiment setup
	5.2 Results
	5.3 Generalization
	5.4 Stiff source terms

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

