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Abstract

Netto, in his book published last century, conjectured that almost all pairs of permutations
from the symmetric group over n letters will generates either the Alternating group (A,) or
the Symmetric group (S5,). Since 3/4 of all such pairs contain at least one odd permutation
it would follow that the probability of generating S, is roughly 3/4. Netto’s conjecture
remained open until Dixon [1] proved the conjecture. Dixon proved that the probability
that a random pair (z,y) z,y € S, generates S, approaches 3/4 as n — co. Also, the
probability that a pair (z,y), z,y € An generates A, approaches 1 as n — co. Dixon also
stated a conjecture that generally for any finite simple group G, the probability approaches
1 as |G| — co. Lately [2] the proof to this conjecture was completed using the classification
of the finite simple groups.

These statistical results indicate that it is, in a sense, “easy” to find generators of S,
and A, (or any finite simple group). Indeed, the main result of this work shows that except
for a very special case, for every permutation z in 5, (A,) there exists a permutation y in
S, (An) so together they generate S, (A,).

In Chapter 1 we give some preliminaries, definitions and general results on generators
in finite groups. We pay special attention to groups with rank 2 (as is the case with Sy,
A, for n > 4), and observe the connection between the Frattini subgroup of a finite group
and the non-generators of the group.

In Chapter 2 we concentrate on the groups S,. We explore the combinatorial structure
of the conjugacy classes, and present methods for calculating their number and sizes. The
main result of this Chapter is a recursive algorithm that calculates the Number theoretical
function p(n), and thus, the number of conjugacy classes in Sy.

The main result is presented in Chapter 3. We explicitly find a complement for every
permutation is S, (Ay), such that together they generate S, (A,). Also, as an example,
we find all the complements of a transposition in S;,.



Chapter 1

Preliminaries

In this Chapter we present some basic definitions and general results on generators in finite
groups. Throughout the Chapter G is a finite group, unless stated otherwise.

1.1 Generators of a group

Generators. We say {¢:lg; € G} are generators of G if (g;) = G.
Rank of a group. The rank of a group is defined:

tk(G) = min{|X| : X = {2:}, z: € G, (z:) = G}

Base. A set X = {z;}ier 2; € G, is called a base (of G) if | X| = 1k(G) and {X) =G.
Independent Set. An Independent set {g;}icr ¢i € G, is a set of elements in G, such that
Vig€ I {g;:7# %) <(gi:1€I).

Complement set. A complement set Y = {y;} : € G, for a given set X = {z;} z; € G,

is a set of elements of GG such that

(X,Y)={g:9€XVgeY)=G

Examples

1. For any cyclic group G, rk(G) = 1 by definition. Thus, any subset of G can be
complemented by the generator of G.
If we identify G = Z/nZ, then the only bases for G are the the elements (], (k,n) =
1, k#1.
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2. Let G be a free group over S symbols. Then rk(G) = |S], but G is not finite. Each
subset of the symbols can be complemented to a base by the other symbols. But if
for example G is a free group over the two symbols {a, b}, then the element a* can
not be complemented to a base of G.

3. Let G = S4. Then rk(G) = 2 and it is easy to verify that the permutation (1,2)(3,4)
can not be complemented to a base of Sy. In Chapter 3 we will show that the example
of 54 and the conjugacy class of (1,2)(3,4) is exceptional.

1.2 Generators of groups with rank 2

Let G be a finite group with rtk(G)= 2.
2—generator. We say z € (& is a 2-generator if it can be complemented to a base of G.

Lemma 1.1 Letx € G, z # 1. Then = is a non 2-generator iff
G=U{M":M; max G, T C M,‘}

Proof: Let z be a non 2-generator. The set of maximal subgroups of &G containing z 1s not
empty, otherwise (z) = G, which is a contradiction to rk(G) = 2. Suppese y € G\U{M; :
M; max G, z € M;}. Then (z,y) = G, otherwise y is in some maximal subgroup M;,
that contains both z and y. This is a contradiction to z being a non 2-generator. Thus,
G\ U{M; : M; max G, z € M;} = . From the above it is easy to see that if for an element
z of G, U{M; : M; max G, z € M;} = G then z is a non 2-generator. |

Lemma 1.2 Let X = {z;} be the set in G of non 2-generators. Then
X ={M:: M;maxG, UM; =G} (1.1)

Proof: Let x € X. By Lemma 1.1, U{M; : M; max G, z € M;} = G. Thus z € N M;,
where M;maxG, UM; = G. This means z is in the union defined in (1.1). Also by
Lemma 1.1, if an element y of G lies in an intersection of makimal subgroups of G, {M;},
UM; = G, then y is a non 2-generator.

The next Lemma shows a connection between covering of a group G, rk(G) = 2, and
the quantity of 2--generators.

Lemma 1.3 The set of non 2-generators is trivial iff for any covering of G, G = UL, G,
G; < G for all 1 < i < m, implies "%, = {1}.

Proof: Assume X, the set of non 2-generators, is trivial. Let G = UL,G;, Gi < G
for 1 €< ¢ < m, be a covering of G. Assume 1 # z € N™,G;. Let M; be a maximal
subgroup of G, G; < M; < Gforalll < i <m. Asz € M;, 1 < i < m, we have
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G=U{M;: M; max G, z € M;}. By Lemma 1.1, z is a non 2-generator. This contradicts
X trivial. Thus, N2, G; = {1}.

Next we assume that for any covering of G, G = UL|Gi, Gi < G for all 1 < i < m,
implies N2,G; = {1}. Assume z € G, = # 1, is a non 2-generator. By Lemma 1.1,
G =U{M; : M; max G, z € M;}. Thus there exists a covering of G with a non trivial
intersection. This contradicts the assumption. Thus, the set of non 2—generators is trivial.

1.3 The Frattini subgroup

It s natural to see the connection between the Frattini subgroup and non 2-generators.

Frattini subgroup. The Frattini subgroup of a group G, Frat(G) is defined

Frat(G) = {M: : Mimax G}

The Frattini subgroup jis defined in terms of non generators, as the next Lemma shows.

Lemma 1.4 Frat(G) is generated by the elements z of G such that for any subset X of G,
(z,X})=G= (X)=G.

Proof: Let z € Frat(G). Suppose X is a subset of G such that (z,X) = G, but (X) < G.
Let M be a maximal subgroup of G containing X. z ¢ M, as this implies, G = (z, X) < M.
This is a contradiction to z € M, for all M, M maximal in G.

Let z € G, such that for any subset X of G, {z,X) = G = (X) = G. Suppose
IM max G, z € M. This means that G = (z,M). But this means M is a subset of G
such that {z, M) = G, (M} = M < G and a contradiction. 1

Lemma 1.5 Let G be a finite group, with vk(G)=2. Then
Frat(G) < {non 2-generators of G}

Proof: If x € Frat(G) is a 2-generator, then Jy € G, (z,y) = G. According to Lemma 1.5
this implies {y) = G, which is a contradiction to rk(G)=2. I

Corollary 1.6 Let S be the set of non 2-generators of G, with rk(G)=2. Then,

|Frat{G)| > 1= |5]| > 1



Chapter 2

Conjugacy classes of the symmetric
group

In this Chapter we show combinatorial results on the conjugacy classes of the group S,,.

2.1 The conjugacy class

Conjugacy. Let z,y be elements of a group G. We say z,y are conjugate if there exists
z € G, such that, z° = z71zz = y.

It is easy to see that conjugacy is an equivalence relation.
Conjugacy class. For an element z in a group G, the equivalence class of elements that
are conjugate to z is called the conjugacy class of x. It is denoted by Clg(z).

C(z). For an element of a group G, the subgroup of elements y € G such that [z,y] =
z Yy lzy = 1 or zy = y=, is denoted by C(z).

Lemma 2.1 Let = be an element of a finite group G. Then,
[G: C(x)] = | Cl(z)]

Proof: Each member y € Cl{(z) can be represented by a power of = by some element z € G,

such that 2% = y.
We choose a set of such representatives Z = {z;}. Observe that |Z| = |Cl(z)|. We

define the natural mapping
F : Z — Left cosets of C(z)

by F(z) = z2C(=z).
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F' i3 one-to—one mapping, because

F(z) = F(z3) < 10(z) = 2C(z) <> 272, € O(z)
= =g = gt =g,

Also F is onto, as for each coset yC(z) we choose the representative z € Z such that
z® = z¥. |

2.2 Conjugacy classes in S,

In the symmetric group each permutation can be represented by a product of disjoint cycles.
Decomposition of a permutation. Let z € 5,. Let z = [[2, C; where C;, 1 <1 < m
are disjoint cycles and |Ci| < |Ciy1| (|Ci| denotes the length of the cycle C;). This is
called the decomposition of . Sometimes the cycles of length one are omitted from the
decomposition, so it is understood that points that are omitted, are fixed under the action
of x.

The decomposition is unique up to the order of cycles in the decomposition that have
the same length, and the writing order of the points of each cycle.
Example

(1,2,3)(4,5,6) = (4,5,6)(1,2,3) = (2,3,1)(6,4,5)
Type of permutation. Let 2,y be permutations in 5,, with decompositions

including the cycles of length one. If m ={, and |C;| = |Dy| for all 1 <: < m, we say that
z,y are of the same type. It is easy to prove that two permutations have the same type
<= they are conjugate in S,.

Usually calculating the conjugacy classes of an arbitrary group is time consuming. All
algorithms are polynomial in the size of the group, and some faster algorithms utilize special
qualities of the group, such as p-group, solvability, etc.

Due to the combinatorial structure of S, calculations are simpler. Namely it is easy
to quickly give the number of conjugacy classes, the size of each class, and output a repre-
sentation of the class.

2.2.1 Sizes of the conjugacy classes in S,

First we show an equation for |Cl{(z)|, for a permutation of a known type.
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Lemma 2.2 Let z € S,, with a cycle decomposition z = [[j2, C; (Cycles of length one are

included). Let k; be the number of cycles of length 1. Then,

nl

N

(2.1)

Proof: There are n! ways of writing the n points {1,...,n} as a product of &, cycles of length
1, ky cyclesof length 2, .. ., k, cyclesof length n. many of these yields the same permutation.
Any i~cycle can be started in any of ¢ places. For example (1,2,3) = (2,3,1) = (3,1,2).
So, there are i* ways of writing the k; i—cycles, keeping the i~cycles in the same writing
order.

In addition, the k; i—cycles can be permuted in &;! ways. For example,

(1,2)(3,4)(3,6) = (1,2)(5,6)(3,4) = (3,4)(1,2)(5,6) =
= (3,4)(5,6)(1,2) = (5,6)(1,2)(3,4) = (5,6)(3,1)(1,2)

As the above changes are the only permitted, the Lemma follows. |
Example
The size of the conjugacy class of (1,2)(3,4,5) in S7.
We have,
k=2, as the points 6,7 are fixed
kg = 1,
kz=1,
k4—k5=k6-—k7—-0
Thus, 1
Cls, ((1,2)(3,4,5) )} = e = 420

(12-20)(21- 1D(3' - 1))
Using (2.1) we can conclude the following.
Lemma 2.8 Letn > 2. For anyz € S,
|ICl(z)| < |C((1,2,...,n—1))] (2.2)

Proof: The proof is by induction on n. For n < 5, it is easy to verify (2.2). By (2.1) we
need only to prove that for any {k;},, such that }_7., ik; = n,

n! nl

_ <
e, %kl —n—1

i=1

or,

T[Fkl2n-1

i==1
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Assume for all n’ < n.

Suppose there is an index ig, 1 < ig € n such that 2 < fok;, < n — 3. We denote a = igk;,.
By induction,

Hik;ki! - igiokio! H jk’kj! > iokio(n_ iok.'o — 1) = a(n— a4 — 1)

i=1 I

Thus it is sufficient to prove

The Lemma follows.

n—1<an—a-1)

& d+a~-1<(a—1)n a>2
2 —
a—1
2
-1
= g + 4 <n

a—1 a—17"
& at+l+—2—<n
a—1
but,
a+l+L§n—3+3=n
a—1

We are left with the cases that all positive ik;, 1 < 2 < n, satisfy either ¢k; = 1 or
thi >n—2.
If there is an index 7o such that iok;, = n, then for all other indexes ¢ # 2o, & = 0.
Thus,

L% k! = it ki) 2 dokiy =n > n—1

i=1

If there is an index %o such that 7gk;, = n — 1, then we know ¢y # 1 and,

1 =1
k,‘ = kio 2 = 2'0
0 i#1,1%
Again,
L5k = (18 1) (ie° kiy!) = g0 ki) 2 dokiy =n — 1
=1
If there is an index o such that igk;, = n — 2, then we are left with an integral part

of n of size 2, meaning either k; = 2, 19 # 1 or k; =1, i, # 2. In either of the cases
there is an index 1;, 1; € {1,2} and i1k, = 2.

The case that all positive tk; equal 1 is clearly impossible.
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2.2.2 The number of conjugacy classes, the function p(n)

Next we wish to enumerate the conjugacy classes of S,,. That is, to count how many classes
there are, and output a representative for each class. As explained above, it is enough to
output for each class the type of the class members. First we shall use a well known result
from [3] to count the number of classes.

Partition of an integer. Let n be a positive integer. A partition of n is a representation
of n as the sum of positive integral parts. For example, all the partitions of 5 are

5=5=441=34+2=34+141=242+1=24+14+14+1=1414+14+1+1.

p(n). We denote the number of partitions of an integer n by p(n). Thus, p(5) = 7.

Clearly, the function p(n) gives exactly the number of conjugacy classes in S,. Each
type is defined by a cycle decomposition, that can be thought of as a partition of n.

Generating formal power series. A generating formal power series of a function
f:Z — Z, is a series of the form,

F(z)= Y fn)z"

nez
The generating formal power series of p(n) was found by Euler and is,

1 1 3 "
F(z)= % T—2") (1—z)(I—22)(l—29)- —1+’12=:1P(n)a:

Example
The intuition of the structure of the generating function F(z) can be explained by the

following example.
Let us look at a partition of 8, 8 = 1+ 2+ 2 + 3. We wish to see which elements of the

generating function contribute a unit to the coefficient p(8) of z3, in accordance with this
particular partition.

1

=14+z+z>+... contributes =z

1
=142+ 2*+... contributes zt = 2?22

=14+22+2z%+... contributes z*
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Using the formal power series it can be proved that p(n) obeys the following recursive
formula,

p(r) —p(n —1) —p(n = 2) + p(n —5) +... + (2:3)
(=1)*p(n — %k(3k — 1))+ (=1)*p(n — %k(3k 1) 4...=0

We would like to show another, more intuitive method of calculating p(n), that will also
produce the partitions, permutations types and representatives of conjugacy classes.
Actually we show something a little stronger.
Restricted partitions of an integer. Let m,n be two positive integers, with m < n.
We call all the partitions of n, with integral parts > m, restricted partitions of n by m.
We denote their number by P(n,m).

Examples

~

1. Clearly p(n) = P(n,1).

~

2. P(7,2) =4, because 7T=2+24+3=24+5=3+4=T.

P(i, 7). Next we define the following function, which is recursive in two variables. For any
two non-negative integers ¢, 3,

0 0<i<y
P(i,j)=1{ 1 i=0 (2.4)
Tiej Pt —k, k) otherwise

Lemma 2.4 For any two positive integers m,n such that m < n,

v

P(n,m) = P(n,m)

Proof: As promised, the proof is very intuitive. We need to explain the logic involved in
a single traversal down the recursion tree, and the stop mechanism that determines the
leaves of the recursion tree.

First we observe that at no time during the recursive process, the variables ¢, are
negative integers. This is because we start off at the root with integers m,n, m < n, and
by the definition of P(i,7) in (2.4) this case is not possible.

Suppose we arrive at a node of the recursive process with 0 < ¢ < 7. As there is no way
to partition ¢ with integral parts > j, we conclude that the path we traveled from the root
to this node (= the partition) is illegal. Therefore we return 0.

Suppose we arrive at a node with 1 = 0. This means the path from the root to this node
defines a perfect partition of the integer n. Therefore, the node is a leaf, and we return a
unit that symbolize the legal partition.
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The last case is the case of j < i. This case explains the logic of P(i,7). Suppose we
decide to count all the partitions of 7 that have at least one integral part of size 5. This
means we take “off” ¢ a part of the size j, and recursively calculate P(i — j, 7).

Suppose 1 > j. To calculate the number of partitions of ¢ that have integral parts of size
2 j+1, and have at least one part of size j+-1, we recursively calculate P(i — (5 + 1),7 + 1).

Summing up over all integers j < k < 1, we have for § <4

P(i,5) = 3 P(i — k, )

k=j
This concludes the proof. |

Corollary 2.5 The recursive algorithm described in Lemma 2.4 calculates all the conjugacy
classes of S,.

Proof: 1f we obsgrve carefully the structure of the recursive process defined by P(3,7), we
sce that during the process we are able to calculate not only the number of partitions, but
output them explivitly. Each partition is described by “legal” traversal down the recursive
tree, and the nodes of the traversal contain the integral parts of the partition. As a partition
of n represents a type of permutation, which in turn represents a conjugacy class of S,,
representatives of the classes can be listed by the algorithm. 1
Examples

1. As we have shown, p(5) = 7. Using P(%,7) we have

p(5) * P(51) = P(5,1)
= P(4,1) + P(3,2) + P(2,3) + P(1,4) + P(0,5)
== P(4,1)+ P(3,2) + 1
=t [P(3,1)+ P(2,2) + P(1,3) + P(0,4)] + [P(1,2) + P(0,3)] +1
= [P(2,1)+ P(1,2) + P(0,3)] + P(0,2) + 3
= P(2,1)+5
= P(1,1) + P(0,2) + 5
= P(1,1)+6
= P(0,1)+6
= 7

2. We have shown that P(7,2) = 4.

P(1,2) = P(7,2)
= P(5,2) + P(4,3) + P(3,4) + P(2,5) + P(1,6) + P(0,7)
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= P(5,2)+ P(4,3)+1

[P(3,2) + P(2,8) + P(1,4) + P(0,5)] + [P(1,3) + P(0,4)] + 1
= P(3,2)+3

P(1,2) + P(0,3) + 3

= 4

3. As stated before in Corollary 2.5, using the recursive algorithm of Lemma 2.4, we
can list all the conjugacy classes of S,,. We show this for n = 5:

P(5I,1)
(1) (1,2)| (1,2,3,4,5)|
P(4,1) P(3,2) P(0,5)
(2) (2,3)| (2,3,4,5 (3,4,5
P(3,1) P(2,2) P(0,4) P(0,3)
(3) (3:4,5) (4,5)\
P(2,1) P(0,3) P(0,2)
(4) (4,51
P(1,1) P(0,2)
(5)
P(0,1)

Collecting all the above legal traversals down the recursion tree, we list representatives
for each of the seven conjugacy classes of Ss:
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The function p(n) can be shown [3] to have an upper bound of the form:

p(n) < V7 k= r\/gj

Using any one of the recursive equations of p(n), (2.3) or (2.4), the following values of

p(n) can be calculated:

—

7
492

627

204, 226

190, 569, 292
3,972,999, 029, 388



Chapter 3

Generators of S, and Ay,

The main theorems we will prove in this Chapter are,

Theorem 3.1 For every permulation z € S,, = # 1 there ezists a permutation y € S,
such that (z,y) = S., ezcept for the case when x is in the Klein subgroup of 5.

Theorem 3.2 For every permutation z € A,, = # 1, there exists a permutation y € A,
such that (z,y) = As.

Using Lemma 1.3, we have an interesting application of the above Theorems.

Corollary 3.3 Letn > 4. Let G= A, or 5., G # Ss. Let G =UR,G;, G; < G for all
1 <i<m, be acovering of G. Then N2, G; = {1}.

3.1 Preliminaries

Before we prove the above theorems, it is required to prove a series of small Lemmas. The
following Lemmas prove that some combinations of cycles generate S, or A,. Some of the
Lemmas are well known.

Transposition. A cycle of length two is called a transposition.

Lemma 3.4 The transpositions in S, together generate S,.

Proof: As explained in Chapter 2, each element of S, can be written as a product of disjoint
cycles. Therefore it is sufficient to show that each cycle can be written as a product of
transpositions, all defined over the points of the cycle.

Let = = (a1, az,...,ax) € S,. We can write

T = (al,ag, .. .,ak) = (al, az)(al, Gg)(al, 0.4) T (0‘.1, ak)

13
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Lemma 3.5 The transpositions (1,2),(1,3),...,(1,n) together generates S,.

Proof: Using Lemma 3.4, it is sufficient to show that any transposition (i, 7) can be gener-

ated. ‘
(i,5) = (1,1)M) = (1,5)(1,4)(1,5)

Lemma 3.6 The transpositions (1,2),(2,3),...,(n — 1, n) together generate S,.

Proof: Using Lemma 3.5 it is sufficient to show that any transposition (1,i), 2 <t < n
can be generated.

(1,5) =(i—1,i)- (314)(233)(112)(2a3)(3»4) (i = 1,1)

Lemma 3.7 The transposition (1,2) and the cycle (1,2,...,n) together generate S,,.

Proof: By Lemma 3.6 we need only write each transposition of the form (1,14 1) as a word
in (1,2),(1,2,...,n). This is achieved as follows:

(2, 3) _ (1’ 2)(1,2,3,...,1’!)

and generally, .
(i +1) = (1,2)02Y fr1<i<n—1

Lemma 3.8 The transposition (1,2) and the cycle (2,3,...,n) together generate S,.

Proof: By Lemma 3.5 we need only write each transposition of the form (1,1) as a word in
(1,2),(2,3,...,n). This is achieved as follows:

(1,3) = (1,2)(@3m)

and generally, _
(1,3) = (1,2)®>"" for 2 <i < n.

Next we prove similar results for the Alternating Group (A,)
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Lemma 3.9 The 3-cycles (cycles of length 3) together generate A,,.

Proof: Let z € A,. As in Lemma 3.4, z can be written as a product of transpositions.
Because z € A,, the number of transpositions in the product is even. Thus, it is sufficient
to show that each product of an adjacent pair of transpositions can be written as a product
of 3—cycles.

Let ¢,7,k,1 be integers, 1 # j, £k # 1,1 < 1,5, k,1 < n. We look at the product of the
two transpositions (1,5}, (k,1).
If:=%k, y=1then (3,7) - (k,{) = ().
Ife#k, j=1then (1,5} (k,j) = (i, k,J).

The last case is 1 # k, j # . In this case we can write

Lemma 3.10 The cycles of the form (i,7,k}, it < 7 < k, together generate A,.

Proof: For any 3—cycle z = (1,7, k) we can assume ¢ < j, k. Otherwise, we simply rewrite
the 3—cycle in that form. Next, if ; > k, then z? = (i, k, ), has the required property. As
(z?)? = z for 3-cycles, the Lemma follows. |

Lemma 3.11 The S-cycles (1,2,3),(2,3,4),...,(n —2,n — 1, n} together generate A,.

Proof: Let H < A, be the subgroup that is generated by the 3-cycles of the form
(1,i+1,i+2), 1<i<n~2

1. First we prove that each 3-cycle ¢ = (3, + 1,k), 1 +2 < &k < n, is In H:
Observe that for : < n — 4,

(1,14 1,1 4 2)(F204+30+9) — (5 1 L 1§ +3),
and generally,
(1,8 + 1, )04+ — (54 1+ 1), fori+2<j<n—-2

This means that for 1 < n —4, all the 3—cycles (1,1 + 1,k), i+ 2 <k <n—1, ate in
H. But for ¢ £ n — 4 we can also generate (1,7 + 1,n} by

(1,0 + 1,n — D)P=20=1m) — (7 7 4 1 n).

We are left with the caseofn -3 <i<n-2 Fori=n-2, (n-2,n—-1,n) € H,
by definition.

So, we are left with the case 1 = n—3. We have to prove that (n—3,n—2,n) € H. In
the case of n < 5, it is easy to verify that the lemma holds, so we can assume n > 5.
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But (n—4,n—2,n-3) = (n—4,n—3,n—2)% € H, because (n—4,n—3,n—2) € H.
Also (n — 5,n — 4,n) € H, as we already proved. Therefore,
(n—2,n—3,n)=(n—4,n—2,n—3)n 510 c [
(n—3n—-2n)=(n—-2,n—-3,n)?c H

2. Using Lemma 3.10, we need only prove that each 3—cycle (1, 3,k), ¢ < j < k, belongs
to H.

Ifj=:41, k=142, we are done.

Otherwise, we know that the 3—cycles (4,7 + 1,7),(i,i + 1,k) € H. So (i + 1,1,5),
(t+1,:,k) € H too. Using these two 3—cycles,

(iakaj) = (3 + 1’3-1.7.)““';‘“ € H, and (‘i: kaj)2 = (i:j: k)‘
Therefore (1,7,k) € H.
This conclude the proof. |

Lemma 3.12 Let n be odd, n > 3. The cycles (1,2,3),(1,2,3,...,n) together generate
A,.

Proof: 1If n = 3 we are done. Else, observe that
(1,2,8)123m) = (2,3 4)
and generally,
(1,2,3)1232m) = (41,5 +2,i+3)for 1 <i<n—3.
By Lemma 3.11, the 3-cycles (i +1,¢ + 2,7 + 3) generate A,. |
Lemma 3.13 Let n be even, n > 4. The cycles (1,2,3),(2,3,...,n) together generate A,.

Proof: We have
(1, 2’ 3)(2,3,....71.) — (1, 3, 4)
(1,3,4)02% = (1,3,4)1*) = (2,4,3)

And (2,3,4) = (2,4,3)? is generated.
By Lemma 3.12, all 3-cycles (3,2 + 1,2 + 2), 2 < 7 < n — 2, are generated using
(2,3,4),(2,3,...,n). The Lemma follows. |

Lemma 3.14 Let n be odd, n > 5. The cycles (1,2,3),(3,4,...,n) together generate A,.
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Proof: We have
(1’ 2, 3)(3,4,...,11] — (1, 2, 4)

(1,3,2)24) = (2,3, 4)

If we look at the cycles (2,3,4),(3,4,...,n) acting on the letters {2,...,n}, we can use
Lemma 3.13 to conclude that these two cycles generate the Alternating group over the
points {2,...,n}. Particularly, all the 3—cycles (z,i+1,1+2),2 < i < n —2, are generated.
Thus, the cycles (1,2,3), (3,4, . .., n) generate all the 3—cycles (1,1 + 1,7 +2),1 <i < n-—2.
Using lemma 3.11, we conclude that (1,2,3),(3,4,...,n) generate A,. |

Theorem 3.1 says we can find a complement for any 1 # z € §,, except for a very
special case. To prove the theorem, we will first find complement for permutations that
have special qualities, and use that in the theorem.

But before we proceed to look for complements for every permutation in §,, it is
important to ask if it is necessary. The answer is that we need only to find a complement
for one representative of each conjugacy class in S,. In other words, if a permutation x has
a complement y in Sy, such that {z,y) = Sy, then any permutation z that is of the same
type as z can be complemented to a base of §,.

For the case of A,, 1t is not true that a conjugacy class is determined by the type of the
permutation. For example, (1,2,3,4,5) and (1,2,3,5,4), are not in the same conjugacy
class in As. They are only conjugate in Ss.

The following lemma shows conjugacy in S, is sufficient.

Lemma 3.15 Let G be S, or A,. Letz € G. Let y € Cls, (). Then z has a complement
in G iff y has a complement in G.

Proof: Let ¢ be a complement to z in G. Since y is conjugate to z in Sy, there exists
z € §,, such that ¥ = y. Then, because G « S,

G =G* = (z,¢)* = (2%, ") = (y,¢%)

So, ¢* is a complement to y. This concludes the proof. 1
For the case z = y, in Lemma 3.15, observe that we can also say something about the
quantity of complements for z:

Corollary 3.16 Let G = S, or Ap. Ifc € G, is a complement toz € G. thenVz € Cg(z),
¢® 15 also a complement.

Examples
As we proved earlier, the transposition (1,2) has as a complement in S5, the cycle
(1,2,3,4,5).

1. (2,3) is of the same type as {1,2) and so in the same conjugacy class. They con-
jugate using {1,3), (1,2)(® = (2,3). Therefore, (1,2,3,4,5)(!3) = (1,4,5,3,2) is a
complement to (2, 3).
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2. (3,4) € Cs,((1,2)), therefore, (1,2,3,4,5)34 = (1,2,4,3,5) is also a complement for
the transposition (1,2) in Ss.
We shall frequently use the following result.

Lemma 3.17 Let G be a group. Let z,y,z € G with the following conditions: = = yz,
(0),0()) =1, [y,2) = 1. Theny,z € (z).

3.2 Generators of S,

First we find complements for permutations with special qualities:

Lemma 3.18 For every cycle z € S,, there ezists a complement y € Sy, such that
{(z,y) = Sa.

Proof: By Lemma 3.15 we can assume that z = (1,...,k), 2< k <n.
We will divide the proof to case analysis:

k=n
We simply choose y = (1,2), and use Lemma 3.7.

k=n-—1
We choose y = (n — 1,n) and use Lemma 3.8.

k=2
We choose y = (1,2,...,n) and use Lemma 3.7.

n—kLkisevenand 2<k<n—1
We choose y = (1,2)(k, k + 1,...,n).

Because n — k is even, the cycle (k,k +1,...,n) has odd order. So y(*=%+1) = (1,2).
Also

zy=(1,...,k) - (L,2)(k,k+1,...,n)=(2,3,...,k—Lk+1,...,n—1,nk)
By Lemma 3.8 and Corollary 3.16 we have,

Se = {(1,2),(2,3,....,k—1LE+1,...,n—1,nk) = F" ) zy) < (z,y)
s0, {x,y) = Sn.

n—kisoddand 2 < k<n-—1
We choose y = (1,n)(k, k+1,...,n—1).
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Again, because n — k is odd the cycle (k,k+1,...,n—1) has odd order. So y(n=k) =
(1,n). Also

zy = (1,...,k)-(L,n)(k,k+1,...,n—1)
= (L,2,...,.k—1k+1,...,n—1,k,n)

By Lemma 3.7 and Corollary 3.16 we have,
San={(1,n),(1,2,...,k-1,k4+1,....n -1 k,n)) = (y("_k),:z:y) < Az,y)
so {z,y) = Sa.
This completes the proof of Lemma 3.18. |

Lemma 3.19 For every permutation x € S, of prime order p > 2, there exists a comple-
ment y, such that (z,y) = S,.

Proof: By Lemma 3.15 we can assume that
z=(1,2,....p)(p+1,...,2p) - (rp+1,...,(r + 1)p) forr > 0.

We use case analysis:

2= (1y2y.0.,P)
was proved in Lemma 3.18.

n — P is even
We choose y = (1,2¥{p,p+ 1,...,n). Then y*~?*¥! = (1,2), and

sy P = 2(1,2) = (2,....p)p+1,...,2p) - {rp+1,...,(r + 1)p)
As the cycle (2,...,p) is of even order, p — 1, we have
(:16(1,2))”"1 =((p+1,...,2p)---(rp+1,....(r + 1)p) )t

Thus,
z(2(1,2)) = (L,...,p)

We conclude using the case analysis in Lemma 3.18,

Sn = ((1: ‘e ‘»‘p)?y) < (‘T’.?y)'
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n—pisoddand (r +1)p<n
We choose y = (1,n)(p,...,n —1). Then y*? = (1,n).
z(l,n) = (1,2,....,p,0)(p+1,...,2p)---(rp+1,...,(r +1)p)
By Lemma 3.17, (L2...,p,n),(p+1,...,2p)--- (rp+ 1,(r + 1)p) € (z(1,n)).
Thus, (1L,...,p) € (z,y}

Using the case analysis in Lemma 3.18,
Sn=1{(1,...,0),¥) < {z,y).
n—pisodd and (r+1)p=n
We choose y = (1,2)(p,...,n —1). Then y** = (1,2).

As in the previous cases it is easy to see that (1,...,p) € (z,y). This time we can
only use Lemma 3.18 to conclude that,

Sn-1 = ((L"'?p)? (1’2)(;’""3”’ - 1)) < (a:,y)-

But since S,_; is maximal in S, and z € S,_; (it moves the point {n}), we can
conclude that (z,y) = S;,.

Lemma 3.19 follows. 1

In the next Lemma, which deals with the case of a permutation of order two, we can
see that the special case of the conjugacy class of (1,2)(3,4) in S, 1s not covered. Indeed,
as we stated before, in this special case, a complement does not exist.

Lemma 3.20 For every permutation z € S, of order two, there is a complement y, except
for the case n = 4, and z 1s a member of the Klein subgroup.

Proof: By Lemma 3.15 we can assume z = (1,2)(3,4)--- (k,k + 1). As in the previous
Lemma, we use case analysis. We can assume n > 4.

x = (1,2)
was proved in Lemma 3.18.

n odd and k& > 3

We choose y = (1,n)(2,3,...,n —1).
y ! o= (2,3,...,n—1)
yn_z - (I,R)
zy™? = (1,2)(3,4)--- (k,k+1)-(1,n) = (1,2,n)(3,4) -+ - (k, E+ 1)
50,
(zy™2® = (3,4)---(k,k+1).
Thus,

(1,2) = = - (3,4)(k,k+1) € (z,7).
Soer = ((1,2),(2,3,...,n — 1)) < (z,y)
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Finally, since (1,n) € {z,y), we have by lemma 3.8,
Sn = ((lnn):(l 2,. n_l)) (m y)

nevenand 3<k<n-—3
For 3 <k < n— 3 we must have n > 6. We choose y = (1,n)(2,4,...,n—1).

y* 7 = (1,n)
"2 (24, n—1)
zy* ™ = (1‘2n)( 4)---{k,k+1)
(zy"°F = (3,4)--(kk+1)

So, as in the previous case, (1,2) € (z,¥).

We will show now how we can “climb” from 5,_; to S, using the permutations we
know that are in (z,y).

By Lemma 3.8, {{1,2),(2,4,...,n — 1)) = S._. Thus (1,2,4,...,n — 1) € {z,y).

As(1,n),(1,2,4,...,n—1) € {z,y), again using Lemma 3.8, they generate a subgroup
of {z,y) which is isomorphic to S,_,, over the points {1,2,4,...,n}.

But, as = moves the point {3}, and S,-, is maximal in S,, we have, {(z,y) = Sn.
Finally, to complete the proof of the Lemma:

neven,n>4and k=n—1
We choose y = (1,n — 1)(2,3,...,n — 2).

Observe that in the case n = 4, this choice degenerates to y = (1, 3), which is why
the proof does not hold for z = (1, 2)(3,4) in S;.

"= (I,m=1)
"2 — (2,3,...,n—2)
" = (1, )( 4)--(n=1n)-(Lin-1)
(1,2,n—1 n)(3,4) (n—=3,n-2)
(myn_3)2 = (1,n—1)(2,n)

Thus, (2,n) =(1,n—1)-(1,n — 1)(2,n) € (z,y).

From the above calculation, and by Lemma 3.8, the group generated by (2,n),
(2,3,...,n — 2), over the points {2,3,...,n — 2,n}, is isomorphic to S,_z, and is
in {(z,y).
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From the above we know

(3 4)(5:6) (n - 3 n— 2) ) (2:3) € (.'L‘,y)
z(3,4)(5,6)--- (n—3,n—2) = (1,2)(n — 1, n)
(1,2)(n — 1,n)- (2,3) = (1,3,2)(n — 1,n).

Thus (n — 1,n) € {(z,y)

As in previous cases, we can use the transposition (n — 1,n) to “climb” to a group
isomorphic to S,~;. We have seen that

(2133"',7’1’_21”)’(”’_1’“) € (m,y)

By Lemma 3.8 these permutations generate the symmetric group over the points
{2,3,...,n}. As z moves the point {1}, and S, is maximal in S,, we can complete
the “climbing” process and conclude {z,y) = S,.

This conclude the proof of the Lemma. |
Using our previous results, we can now prove Theorem 3.1.
Proof of Theorem 3.1: Let z € S,, z # 1. It is obvious that there exists an integer m > 1,
such that, 2™ is of prime order. Unless z is a member of the Klein subgroup in the case
n = 4, we can use Lemmas 3.19 and 3.20 to explicitly find y, a complement to z™ in S,.
Since (z™,y) < (z,y), the theorem follows. |

3.3 Generators of A,

We now turn to the case of A,. To prove theorem 3.2, we again prove first a series of Lem-
mas. The Lemmas constructively find complements for permutations in A,, with special
qualities. Specifically, we again find complements for cycles, and then for permutations of
prime order. Then, we use these results, as in Theorem 3.1, to prove Theorem 3.2.

Lemma 3.21 For every cycle © € A,, there erists a complement y € A,, such that
(z,y) = A,.

Proof: By Lemma 3.15 we can assume, z = (1,...,k) 3<k <n, k£ odd
We now turn to case analysis:

k=n (nis odd)
We choose y = (1,2,3) and use Lemma 3.12.

k=n—1 (niseven)
We choose y = (n — 2,n — 1, n) and use Lemma 3.13.
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k=3
Similarly to the previous cases we can choose, y = (1,2,...,n) for n odd, or y =
(2,3,...,n) for n even.

nodd (n—kiseven),n—kZ 2 (modg)and s <k<n-—2
We choose y = (1,2,3)(k,...,n).

First we observe that y € A, as a product of two disjoint cycles of odd lengths. By
Lemma 3.17, (1,2,3),(k,...,n)€ (y). We have by Lemma 3.12, 4; = (z,(1,2,3))
= ((1,.--,k),(1,2,3))< (2,9)-
Particularly all the cycles {i,7 + 1,7 +2), 1 <i <k —2, arein (z,¥).
In particular (k ~ 2,k —1,k) € (z,y). So
((k—2,k~1,k),(k,...,n)) < (2,y)
and by Lemma 3.14 this group is isomorphic to A,—g43. Thus, all the cycles (4,7 + 1,7 + 2),
k—2<i<n-—2 arein {z,y).
Using Lemma 3.11 we conclude that {z,y) = A,.

n=7and k=5
We choose y = (1,6,7). By Lemma 3.14, (z,y) = As.

nodd (n—kiseven),n—k=2(modg),n>gand5<{k<n—2
We choose y = (1,n — 1,n)(k,k+1,...,n —2).
Observe that y € A,, as a product of two disjoint cycles of odd length.
As O((k,k+1,...,n —2)) =n—k—1=1(mod 3), by Lemma 3.17,

(1,n —1,n),(k,k+1,...,n —2) € (y).

Therefore the group (z,(1,n —1,n)) =((1,2,...,k),(1,n—1,n))< (z,y), and by
Lemma 3.14 is isomorphic fo Agya.

Particularly, (k,n — 1,n) € (z,y), so the group generated by (k,n— 1,n) and
(k,k+1,...,n—2) is in {z,¥), and by lemma 3.14 isomorphic to Akl

By rewriting the points {1,...,n}, in the form {1,...,k,n—1,n,k+1,...,n— 2}
we see that as all the cycles (i,i +1,i+2), 1 < i < n —2, are in {z,y). So again,
using Lemma 3.11 we have, {z,y) = An.

neven (n—kisodd),n —kZo(modg)and 5<k<n—3
We choose y = (1,2,n)(k,...,n—1).

Observe y € A, because it is a product of two disjoint cycles of odd length. As
O((k,...,n—1)) = n—k # 0 (mod 3), By Lemma3.17, (1,2,n), (k,...,n — 1) € (y).
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The group {(z,(1,2,n)} = Ag41, by lemma3.13. Particularly, the cycle (k — 1, k,n) € (z,v),
so ((k—1,k,n),(k,...,n)} < {(z,y}, which by lemma 3.14 is isomorphic to An_g42.

By rewriting the points {1,...,n} and using similar arguments as in the previous
case, (z,y) = An.
neven (n—kisodd),n —k=o0o (mod3)and 53 <k<n-—3
We choose y = (1,2,3)(k — 1, %,...,n).
Observe y € A, as it is a product of two disjoint cycles of odd length.
As O((k—1,k,...,n))=n—k+2 =2 (mod 3), By Lemma 3.17,

(1,2,3), (k= 1,k,...,n) € (y).

By Lemma 3.12, {(1,2,3),z) = ({(1,2,3),(1,...,k)) = Ay, so Ax < {z,y). Particu-
larly, (k — 2,k — 1, k)€ (z,y).

This means that {((k — 2,k — 1,k),(k — 1,%,...,n)) < (z,y) and by Lemma 3.12
(k—2,k=1,k),(k—=1,k,...,n)) = Ax_pqa.

Thus, all the cycles (1,1 +1,7+2),1 £ i <n—2arein (z,y), and using Lemma 3.11,
(z,y) = An.

The Lemma follows. |

Lemma 3.22 For every permutation z € A, of prime order p > 3, there exists a comple-
ment y € Ay, such that (z,y) = A,.

Proof: By Lemma 3.15 we can assume
z=(1,2,...,p)(p+1,...,2p)(rp+ 1,....,(r + 1)p), for r >0
Again we use case analysis.

z=(1,...,p)
Was proved in Lemma 3.21.

n odd (n — p is even) and n — p # 2 (mod 3).
We choose y = (1,2,3)(p,...,n).

By Lemma 3.17, (1,2,3), (p,...,n) € {v).

z(1,2,3)? z(1,3,2)

(1,2,...,p)-(1,3,2) - (p+1,...,2p) - - (rp+ 1,....(r + 1)p)

(3,4,...,p)p+1,....2p) - {rp+1,...,(r+1)p)

By Lemma 3.17,
(3,4,...

So, (1,...,p)

i

ph(p+1,...,2p) - (rp+1,...,(r+ 1)p) € (2(1,2,3)%).
€ (z,y).
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Using the case analysis of Lemma 3.21,
An = ((13 e ap):y) < (.z,y).

nodd{(n—piseven),n —p=2(modg)and (r+2)p<n—2
We choose y = (1,n — 1,n)(p,...,n—2).

By Lemma 3.17, (1,n ~ 1,n),(p,...,n —2) € (y)

z(l,n—1,n) = (1,2

= (1,2

By Lemma 3.17,
(1,2,...,p,m—Ln), (p+1,...,2p) - (rp+ 1,...,(r + )p) € (=(1,2,3)%).
So, (]-::p) € ($,y)

cp)-(Ln~1Ln)-(p+1,...,2p)---(rp+1,...,(r +1)p)
cpn—Ln)p+1,...,2p)---(rp+1,...,(r+1)p)

3.

H]

Using the case analysis of Lemma 3.21,
A ={(1,...,p),(L,n=1Ln)p,...,n—2)} < (z,y)

nodd (n—piseven),n —p=2(mod3)and (r+1)p=n—1
We choose y = (1,2,n)(p,...,n—2).

By Lemma 3.17, (1,2, ), (p,...,n — 2) € {y)

z(1,2,n) = (1,2,...,p)-(L,2,n)-(p+1,...,2p)---(n—p—1,...,n=1)
(L,n)(2,3,....p)(p+1,....,20)- - (n—p—1,...,n—1)
(z(1,2,2) = ((p+1,...,2p)--(n—p—1,...,n=1))"
(

Thus, 1,...,p) € {(z,y).

1
-

((1,2,n),(1,...,p)) is a group isomorphic to Ap4 by Lemma 3.13.

In particular (p — 2,p — 1,p) € (z,y), so the group ((p — 2,p— 1,p),(p,.--,n —2)),
which by Lemma 3.14 is isomorphic to Aa_p41, is in (z,y). By rewriting the points
{1,2,...,n—2,n} and using lemma 3.11, it is easy to see that the Alternating group
over the points {1,2,...,n —2,n} is in (z,¥).

To complete the proof of this case we use the fact that z moves the point {n — 1}.
The cycle (n —p—1,...,n—1) € {(z,y), because

-1

(n—p—1,....,n—1=z(1,...,p)- - (r—p+1,...,7p))

We can use the cycles (n—p—1,n—p,n—p+1),(n—p—1,...,n—1) to generate the
Alternating group over {n—p—1,...,n—1}. In particular (n—3,n—2,n—1) € (z,¥),
and because n is odd, by Lemma 3.14

An={(n-3n-2n-1),(1,n2...,n—3) <(z,y)
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nodd (n—piseven),n—p=2(mod 3)and (r +1)p=n
We choose y = (1,2,3)(p,...,n— 2).

Again, (1,2,3),(p,...,n —2) € ().

z(1,2,3)* = z(1,3,2)
= (1,2,...,p)-(1,3,2)-(p+1,...,2p)- - (n—p,...,m)
3,4,...,0)(p+1,...,2p)---(n—p,...,n)
By Lemma 3.17, 3,4,...,p),(p+1,...,2p)---(n —p,...,n) € {z(1,2,3)).

Thus,

(1,2,3) together with (1,...,p) generate A, < {z,y). As in the previous case, using
(p—2,2—1,p), (p,...,n—2) € {z,y) it is easy to see, A,_; < {z,9).

Using the fact that x moves the points {rn —1,n}, and applying similar arguments to
those of the previous case, {z,y) = An.

n even (n —pisodd),n —pZ o (mod 3) and (r + 1)p < n.
We choose y = (1,2,n)(p,...,n —1).
Again, (1,2,n),(p,...,n - 1) € ().

z(1,2,n) = (1,2,...,p}-(1,2,7)-(p+1,...,2p)--(rp+1,...,(r +1)p)
= (1,n)(2,3,...,p)p+1,...,2p)- - (rp+1,...,(r +1)p)
(P+1, 2?) (rp+1,...,(r+1)p)_1
(1,.-.,p) € (z,9).

(z(1,2,n))""
Thus,

As in the previous cases using the cycles (1,2,n),(1,...,p),(p,...,n—1) € (z,¥), we
can generate the Alternating groups over the points {1,...,p,n} and {p—2,...,n—1},
use rewriting of points and Lemma 3.11 to conclude,

(z,y) = An.

neven (n—pisodd),n—pZo(mod 3)and (r+1)p=mn
We choose y = (1,2,3)(p,...,n—1)

Aga'inv (11'2,3)1 (p:' sy — 1) € (y)'

z(1,2,3)* = =z(1,3,2)
= (1,2,...,p)-(1,3,2) - (p+1,...,2p) - (n—p,...,n)

34,...,p)p+1,.. 2?)"'('”_?"-"”)

3,4,...,0), (p+1,...,20)---(n—p,...,n) € (z(1,2,3)%).

(
(
By Lemma 3.17, (
( (z,9).

Thus,

=
o

——t
m
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Using the cycles (1,2,3),(1,...,p)(p,...,n — 1) € (z,y), it is easy to see that
An-—-l S (:L':y)'

It is easy to see that the last cycle of z, (n —p,...,n), belongs to (z,y). As the cycle
(n—p,n—p+1,n—p+2) belongs to (z, y), using Lemma 3.12, (n—2,n—1,n) € (z,y).

Lastly, as n is even, by Lemma 3.13,
An=A{(1,...,n=-1),(n - 2,n ~ 1,n)) <{z,y).
This completes the case analysis, and concludes the proof. 1

Lemma 3.23 For every permutation x € A, of order two, there exists a complement y,
y € An, such that (z,y) = As.

Proof: By Lemma 3.15 we can assume z = (1,2)(3,4)--- (k,k+ 1) for3 <k <n-—-1.
Again we use case analysis:

z = (1,2)(3,4) and n = 4
We choose y = (1,2, 3).

zy = (1,3,4)

zy? = (2,3,4)

By Lemma 3.13 A4 = {(1,2,3),(2,3,4)). Thus, {z,y) = A4.

n even, n > 6 and n Z o (mod 3)
We choose y = (1,2,3)(4,...,n). Observe (1,2,3),(4,...,n) € {y).
If £ > 7 then,

z-(1,2,3) = (1,2)(3,4)-(1,2,3) - (5,6)--- (k, k+1)
= (1,3,4)(5,6)--- (k, k+1)
So for all £ > 3 (1,2)(3,4), (1,3,4) € (z,y). As (1,2)(3,4)-(1,3,4) =(1,2,3), using
the arguments of the last case, A4 < {z,y).
Using previous methods, it is easy to see A, = (A4, (4,...,n)). Thus, {(z,y) = A,.

neven,n>6,n=o0(mod3g)and k=3
We choose y = (2,...,n).

¥ =

1,2)(3, 4)®™ = (1,3)(4,5
£(13)(45) (

( )

(1,2)(3,4)135) = (1,5
27 = (L,2)E0D = (1,
Thus, (1,5)(2,3) - (1,n)(2,3) = (1,5,n) € {z,y)
(1,5,n)° = (1,5,n)12DBN = (25 n)
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By Lemma 3.13, H = ((1,5,n),(2,5,n)) is a group isomorphic to A4, over the points
{1,2,5,n}. In particular (1,5)(2,n)
)

(1,5)(2,3) - (1,5)(2,n) = (2,3,n) € (z,y).

H, = (H,(2,3,n)}, is a group isomorphic to As, over the points {1,2,3,5,n}, and
H, < {z,y). Using previous methods it is easy to see
A, = (H1,(2,...,n)). Thus, (z,y) = A,.

neven,n > 6,n =0 (mod 3)and k > 7
We choose y = (1,3,5)(6,...,n). Observe (1,3,5),(6,...,n) € (y).

Ask>1,
:1:-(1,3,5) = ( )( )(5:6 (153:5)'(738)"'(k1k+1)
= (1,2,3,4,5,6)(7,8) - (k, & + 1)
(x ) (1)315))2 = (1!375)(2’436)'
Thus (2,4,6) € (z,y).

H = {(2,4,6),(6,...,n)) is a group isomorphic to A,_3, over the points {2,4,6,...,n}.
As in previous cases, we start a “climbing” process from H to A,.

(6,7,8) € H. Also (1,2)(3,4)(5,6)(7,8) € (z,y), as it can be written as product of z
and a permutation of order two in H. We have,

(1’2)(334)(53 6)(7’8) ’ (65 778) = (11 2)(354)(53 7a 6)

Thus (5,6,7) € (z,y), and so H; = (H,(5,6,7)) which is isomorphic to An_; over
the points {2,4,5,...,n}, is in (z,y). It is easy to see that A, = (H;,z). Thus,
(z,y) = A,

n odd

Remark As we stated before, there are usually many complements to a given permu-
tation. Up to this point in the proof, for a given permutation x € A,, we chose a com-
plement of a particular type. Namely, the complement was composed of two disjoint
cycles, one of length three and the other of length I, with conditions: ! =1 (mod 2),
[ # 0 (mod 3). Thus, we were always able to “separate” these two cycle, and show
that together with z, they generate A,. In the case x of order two and n odd there
are sometimes no such complements. For example, in the case z = (1,2)(3,4) and
n = 17, all the complements are of two types: T—cycles or products of 2-cycle by a
5-cycle.

We choose y = (1,...,n).
We argue (1,2 n) ( ,¥). If so, then by Lemma 3.12,

An ((1:2:n))(15---1n)) < (:L‘,y).
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Let m be the unique minimal integer such that,
7 = ((1,2) - (b k+ 1)) = (n—k+ Ln—k+2)-(n—2,n—1)(n, 1)

Then it is easy to see,

']-jixyﬂ = (1a2) ’ (13'"’) "z

Where z is a permutation of order two over the points {3,...,n — 1}.
Example ‘

z=(1,2)(3,4)(5,6)(7,8), n=11

¥ = (3,4)(5,6)(7,8)(9,10)

¥ = (5,6)(7,8)(9,10)(11,1)

Thus m = 2 and,

2

z-o¥ - 2¥' =(1,2)-(1,11) - (5,6)(7,8)
So for this example z = (5,6)(7, 8).

From the above it is obvious that

(ﬁzy")4 =(1,2,n)

This completes the proof of this case, and the proof of the Lemma.

Lemma 3.24 For every permutation ¢ € A, of order three there exists a complement y,
y € A,, such that {z,y) = A,.

Proof: By Lemma 3.15 we can assume z = (1,2,3)--- (k,k+ 1, k+2) 1<k <n -2
Again we use use case analysis:

¢ =(1,2,3)
This case was proved in Lemma 3.21.

n <6
In this case the only possibility is z = (1,2, 3).
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n is even, n > 6 and n Z o (mod 3)
We choose y = (1,2,4)(3,5,...,n

)
Observe (1,2,4),(3,5,...,n) € (y).
If K > 7 then,

2(1,2,4) = (1,2,3)(4,5,6) - (1,2,4) - (7,8,9) -+ (k, k+ 1,k +2)
= (1,2,4,5,6)(7,8,9)--- (k, k + 1,k +2).
Thus, (2(1,2,4))° = ((7,8,9) - (k,k+1,k+2))7!
So for all k£ >4, (1,2,3){4,5,6) € (z,y).
(1 9 4)(123)(456) (2 3 5)

By Lemma 3.14, ((1, 2,4), (2,3,5)) = As < (z,y). Using previous methods it is easy
to see that A, = (As,(3,5,...,n)). Thus {(z, ) A,.
(

niseven,n>6,n=o0(mod 3)andk < n—2
We choose y = (1,4,n){5,...,n — 1).
Observe (1,4,n),(5,...,n—1) € (y).
If £ > 7 then,
z(1,4,n) = (1,2,3)(4,5,6) - (1,4,n)-(7,8,9)--- (k,k + 1,k +2)
(1,2,3,4,5,6,n)(7,8,9) - (k,k + 1,k +2)
((1,4,n)) = (7,8,9)---(k,k+1,k+2).

So for all & >4, (1,2,3)(4,5,6) € {z.y).
(1,4,n)(1:23456) — (9 5 n),

Using previous methods, it is easy to see that
An = ((15 4,71), (25 51”)3(57 RN L 1)’ (11253)(41 516))
Thus (z,y) = A,.
niseven,n >6B6,n=0(mod 3)and k=n —2
We choose y = (1,3,4)(5,...,n —1).
Observe (1,3,4),(5,...,n —1) € {y).
If £> 7 then,
z(1,3,4) = (1,2,9)(4,5,6)-(1,3,4)-(7,8,9)--- (k, k+ 1,k +2)
= (1,2,4,5,6)(7,8,9)--- (k,k+1,k+2).
((1,3,4))° = ((7,8,9)---(k,k+1,k+ 2))7!
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So for all £ > 4, (1,2,3)(4,5,6) € (z,y).
(1,3, 9029458 = (1,5,2).
Using Lemma 3.14 twice we have,
H={(1,5,2),(5,...,n = 1)) & An_3
and A,y = {(1,3,4),H) < {z,y}. As the last cycle in the decomposition of z is
(n —2,n —1,n) we conclude A, = (z,y).
nis odd, n 2> 7 and n Z 1 (mod 3)
We choose y = (1,2,4)(5,...,n).
Observe (1,2,4),(5,...,n) € {y).
By the same analysis of the case “n is even and n # 0 (mod 3)” A5 < {(z,y}.
Using previous methods it is easy to see A, = {As,(5,...,n)). Thus, (z,y) = An.
n=-r7
In this case the only possibility is z = (1,2, 3)(4,5,6). We choose y = (1,4, 7).
y:r: — (1’4’ 7)(1,2,3)(4,5,6) - (2’ 5, 7)
H = ((1,4,7),(2,5,7)) is the Alternating group over the points {1,2,4,5,7}.
particular (1,2,4) € {z,y).
(1,2,4)123850) = (2,3, 5).

H, = (H,(2,3,5)) is the Alternating group over the points {2,...,7}. Again, it is
easy to see that A; = (H;,z). Thus (z,y) = As.
nisodd,n>7,n=1(mod3)and k< n—2
We choose y = (1,4,n}(6,...,n).
Observe (1,4,n),(6,...,n} € (y).
Using similar analysis to the case “n is even, n = 0 (mod 3} and k£ < n — 2" we can
conclude (z,y) = An.
nisodd,n>7,n=1(mod3)and k=n — 2
We choose y = (1,3,4)(6,...,n —1).
Observe (1,3,4),(6,...,n—1) € {y).

z(1,3,4) = (1,2,3)(4,5,6)-(1,3,4) - (7,8,9)--- (k, k + 1,k + 2)
= (1,2,4,5,6)(7,8,9)--- (k, bk + 1,k +2)
(z(1,3,9))° = ((7,8,9)---(k,k+1,k+2))!
Thus (1,2,3)(4,5,6) € (z,y).
(1,3,4)(1,2,3)(4,5,6) = (1,5,2).
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By Lemma 3.14, As = ((1,3,4),(1,5,2)) < (z,y}. Using previous results it is easy to
see that Ag = ((1,2,3)(4,5,6), As) and As—1 = (A6, (,-..,n — 1)) £ (z,y).

As the last cycle in the decomposition of z is (n—2,n—1,n) we conclude, {z,y) = A,.

This concludes the proof. |
Using our previous results, we are now able to prove Theorem 3.2.
Proof of Theorem 3.2: Let z € A,, z # 1. As in Theorem 3.1, there exists an integer
m > 1 such that 2™ is of prime order. Using Lemmas 3.22, 3.23 and 3.24 we can find
explicitly y € A, which is a complement to z™.
Since {(z™,y) < {(z,y}, the theorem follows. |

3.4 Complements of transpositions

Up until now we concentrated on the existence of complements. As a simple example we
shall now show explicitly all the complements of one particular conjugacy class of S,, the
class of transpositions.

First, a few definitions and general results. Throughout these preliminaries, G is a finite
permutation group, |G| > 1, acting on a set X, | X| > 2.
Transitivity. G is said to be transitive if for any two points z,y € X, there exists a
permutation w € G, such that zr = y. (z7 means r acting on z).

From this point on, we also require of G to be transitive (on X).

Domain of imprimitivity. A subset Y C X, |Y| > 2, is called a domain of imprimmtivity
of G, if for every permutation = € G, either Yr =Y or Yo NY = 0.

Primitive group. G is primitive if it possess no domain of imprimitivity.

Lemma 8.25 S,(A,) is primitive for alln > 1.

Proof: The case of n < 2 is trivial. It is easy to verify that for n > 3 S, (A,) is transitive.
Suppose by contradiction there exists a subset ¥ C {1,...,n}, |¥| > 2, which is a domain
of imprimitivity of 5,(A,). Let z € {1,...,n}\Y, y,z € Y. We can simply choose the
3—cycle 7 € 5,(An), ™ = (z,y,2). zr =y, yT = 2, 27 = x, so the assumption Yr =Y or
YrNY = § does not hold. 1

Lemma 3.26 Let {m;}1,, m € G, be generators of G. Let {M;}\.,, M; C X, UL M; =
X, M; " M; = 0 fori # j, form a partition of X, such that Mym; = My, 1 < ¢ < m,
1 <j <l for somel < k <I. Then each M;, |M;| > 2, is a domain of imprimitivity of
G.

Proof: Let M;,, 1 < jo <!, |M;,| > 2, be a subset of the partition. Let mo € G be an
arbitrary element. mq = [[j=; 7if, ¢ = %1, is an arbitrary representation of mo as a word

in {m;} U {m;'}. The proof is by induction on s.
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If s =1, then mp = wf::, for some 1 <4z, < m. Thus M;, %0 = M;, or M;;xo N M;, = 0.
Assume for all s’ < s. By induction M;, ([TiZ] mi*) = My, for some 1 <t < I. Thus

Mimo = M (] =i*) = Mot = M, for some 1 <u < L.
k=1

So Mjo’?l'o:Mjo if‘U'—"‘jQ or MjoﬂonMj‘):@if‘u#jo. |

A simple use of the the two Lemmas allows us to derive a general restriction on com-
plements of a permutation. This simple restriction is nearly enough to determine all the
complements of a transposition in S,.

Lemma 3.27 Letw € S.(An), n > 3. LetY C {1,...,n} be the subset of points moved by
7, Y| =k, 1<k<n. Let o € S,(A,) be a complement to m, such that (x,0) = S.(A,),
and let o = [[2, C; be the cycle decomposition of o (including cycles of length 1).

Then the following condition on o must hold: For any cycle of the decomposition C;,
1 <1< m, if Z; is the subset of points moved by C;, then Y NZ; # B (this implies m < k).

Proof: The proof is simple. Assume there exists a cycle C;,, 1 < iy < m, in the decompo-
sition such that Y N Z;, = 0. We denote M, = Z;,, Mo = {1,...,n}\ Z;,. Thus, |M;| > 2
or [M2| > 2 (n > 3). Observe that Myr = M, Max = My, Myoc = My, Mo = M,. By
Lemma 3.26 this implies that either My or M, are domains of imprimitivity of {x,o}. But
since {m,o) = S.(A,) and by Lemma 3.25 5,(A,) is primitive, we have a contradiction. I

We now prove the main result of this section and explicitly list all the complements
of a transposition. The previous result gives us an important limitation on the form of a
complement of a transposition. Namely, such a complement can be composed of at most
two disjoint cycles. Adding a few other restrictions we have the following result.

Lemma 3.28 For any transposition * € S,, n > 3, # = (a1,a2), ¢ € S, is a complement
to w, such that (w,o) = S, iff o has one of the following forms (cycles of length one are
omitted):

The 1—cycle cases

1. o is a (n—1)-cycle that fizes one of the points {a1,az}.

2. o is a n—cycle with the following property: Let m be the unique integer, 1 < m < n,
such that {a;}o0™ = {a;}. Then (m,n) = 1.

The 2—cycle case

3. o has a cycle decomposition 0 = C, - Cy, |G| = m;, 1 <1 <2, my+my = n,
(m1,m2) = 1 and C; moves the point {a;}.

Proof: By Lemma 3.15 we can assume x = (1,2).
Let o € S, have one of the above forms.
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1. This case was proved in Lemma 3.8.

2. Let m be the unique integer, 1 < m < n, such that {1}¢™ = {2}. As(m,n)=1,0™1is
also a n—cycle. By rewriting the points {3,...,n} we can assume ¢™ = (1,2,3,...,n).
Thus, by Lemma 3.7, S, = ((1,2),6™) < {(1,2),0).

3. By rewriting the points {3,...,n} we can assume o = (1,3,...,7)(2,7 + 1,...,n)
with (j —I,n—j+1)=1 ¢"*isis a (j — 1)-cycle, so by Lemma 3.8,

Sj = ((172)’0'“_j+1) < ((1,2),‘7)'

Also, ¢~ is a (n — j + 1)-cycle so it clear the symmetric group over the points
{1,2,7+1,...,n}isin {(1,2),0). As thisimplies all the transpositions (1,%),2 <¢ <n,
are in {(1,2),0), by Lemma 3.5, {(1,2),0) = S,.

This conclude the first part of the proof.

Next, we assume ¢ € S, is a complement to # = (1,2), such that {(1,2),0) = S..
Let o = [[%, C: be the cycle decomposition of o (cycles of length one are omitted). By
Lemma 3.27, k < 2, otherwise there exists a domain of imprimitivity of {(1,2), o).

We now use case analysis:

E=1and |C,|<n—2
In this case there are only two possibilities:

1. (1,2) and ¢ both fix a point {5}, 3 < j < n. This implies {(1,2),0) # Sa-
2. o fixes the points {1,2}. This implies {1,2} is a domain of imprimitivity for

{(1,2),0).
We conclude this case is not possible.

k=1and |C,|=n—1
If the fixed point of & is not {1} or {2} it is easy to see {(1,2),0) # S,. Otherwise,
o has the form (1) of the Lemma.

k=1and |C,|=mn

Let m be the unique integer, 1 < m < n, such that {1}¢™ = {2}. Assume by
contradiction (m,n) # 1. Let o™ = ]'[;-___1 D; be the cycle decomposition of ¢™. We
denote by M; the subset of the points moved by the cycle D;, 1 < 5 < . Observe
that | = (m,n) and 2 < |M;| = nfl < n, 1 < j <L Obviously, M;(1,2) = M; for
all 1 <j < 1. Also, it is easy to see that for each j, 1 < 7 < [, there exists an index
r, 1 < r <1, such that M;o = M,. Thus, we have the conditions of Lemma 3.25
and each M;, 1 < j < [is a domain of imprimitivity of {(1,2),¢). This contradicts
((1,2),0) = Sa. Thus (m,n) =1 and ¢ has the form (2).
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k=2and |C,|+|C,| <n
In this case we know there is at least one point {j}, 1 < j < n, that ¢ fixes. If j > 3,
then {(1,2), o) fixes the point {7}, and so {(1,2), 0} # S.. If 7 < 2, then at least one
of the cycles Cy, C; fixes the points {1,2}, say C;. Thus the subset of points moved
by € is a domain of imprimitivity of ((1,2),0). This is a contradiction to S, being
primitive. We conclude this case 1s not possible.

k=2and |C|+|C.l=n
If one of the cycles C,Cs moves both points {1,2}, then it is easy to see the subset
of points moved by the other cycle is a domain of imprimitivity of {(1,2), ¢). Thus,
we can assume o = (1,3,...,7)(2,7 +1,...,n) for some 3 < 7 < n—1. Assume
g=(—1,n—j7+1)+#1 Observe that for any two elements z,y of an arbitrary
group, {z,y) = {z,z -y). In this case {(1,2),0) ={(1,2),(1,2) - o) ={(1,2), 01), where
o1 = (1,j+1,...,m—1,n,2,3,...,5) is acycle of length n. Observe {1}o7 %" = {2}.
Because glj — 1, g|n — j + 1, we have g|n. Thus (n — 7 + 1,n) # 1. We see this case
can be reduced to the case k¥ = 1, |C1| = n with m = n — j + 1 as the unique
integer such that {1}¢™ = {2}. In this case S, = {(1,2),01) was not possible. Thus,
Sz = {(1,2), o) is not possible. We conclude (j —1,n — j+ 1) =1 and so ¢ has the
form (3) of the Lemma.,
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