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Abstract 

Netto, in his book published last century, conjectured that almost all pairs of permutations 
from the symmetric group over ii letters will generates either the Alternating group (As) or 
the Symmetric group (Sn). Since 3/4 of all such pairs contain at least one odd permutation 
it would follow that the probability of generating S. is roughly 3/4. Netto's conjecture 
remained open until Dixon [1] proved the conjecture. Dixon proved that the probability 
that a random pair (x, y) x,y E Sn generates S. approaches 3/4 as ii -' co. Also, the 
probability that a pair (x, y), x, y E A generates A approaches 1 as it -* co. Dixon also 
stated a conjecture that generally for any finite simple group G, the probability approaches 
1 as IGI -+ co. Lately [2] the proof to this conjecture was completed using the classification 
of the finite simple groups. 

These statistical results indicate that it is, in a sense, "easy" to find generators of S, 
and An (or any finite simple group). Indeed, the main result of this work shows that except 
for a very special case, for every permutation x in 5n  (An) there exists a permutation y in 
S, (A,.) so together they generate Sn (As ). 

In Chapter 1 we give some preliminaries, definitions and general results on generators 
in finite groups. We pay special attention to groups with rank 2 (as is the case with 5,., 
A for ii > 4), and observe the connection between the Frattini subgroup of a finite group 
and the non—generators of the group. 

In Chapter 2 we concentrate on the groups S,. We explore the combinatorial structure 
of the conjugacy classes, and present methods for calculating their number and sizes. The 
main result of this Chapter is a recursive algorithm that calculates the Number theoretical 

function p(n), and thus, the number of conjugacy classes in 5n 
The main result is presented in Chapter 3. We explicitly find a complement for every 

permutation is Sn (An), such that together they generate 5,. (As). Also, as an example, 
we find all the complements of a transposition in S,. 

'I 



Chapter 1 

Preliminaries 

In this Chapter we present some basic definitions and general results on generators in finite 
groups. Throughout the Chapter 0 is a finite group, unless stated otherwise. 

1.1 Generators of a group 

Generators. We say {gjlgj € 0} are generators of 0 if (gi) = G. 

Rank of a group. The rank of a group is defined: 

rk(0) = min{ IX X = 	xi E 0, (xi) = O} 

Base. A set X = 	xi E 0, is called a base (of 0) if JXJ = rk(0) and (X) = G. 

Independent Set. An Independent set {gj}jj gi E 0, is a set of elements in 0, such that 
VioEI (gj :jio)<(g:iEI). 

Complement set. A complement set Y = {y} yi E 0, for a given set X = {x} xi E 0, 

is a set of elements of 0 such that 

(X, Y) = (g g E X V g E Y) = 0 

Examples 

1. For any cyclic group 0, rlc(0) = 1 by definition. Thus, any subset of 0 can be 
complemented by the generator of G. 

If we identify 0 Z/wZ, then the only bases for Care the the elements [k], (k, n) = 

1, k 0 1. 

1 
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2. Let G be a free group over S symbols. Then rk(G) = 181, but G is not finite. Each 
subset of the symbols can be complemented to a base by the other symbols. But if 
for example G is a free group over the two symbols {a, b}, then the element a2  can 
not be complemented to a base of G. 

3. Let G =S4. Then rk(G) = 2 and it is easy to verify that the permutation (1, 2)(3,4) 
can not be complemented to a base of 84. In Chapter 3 we will show that the example 
Of S4  and the conjugacy class of (1,2)(3,4) is exceptional. 

1.2 Generators of groups with rank 2 

Let G be a finite group with rk(G)= 2. 
2-generator. We say x E G is a 2-generator if it can be complemented to a base of G. 

Lemma 1.1 Let x E G, x 1. Then x is a non 2-generator if 

G=U{M1:Mj max G, XEM1} 

Proof: Let x be a non 2-generator. The set of maximal subgroups of G containing x is not 
empty, otherwise (x) = G, which is a contradiction to rk(G) = 2. Suppose y E G\U{M 
M1  max G, x E M1}. Then (x, y) = G, otherwise y is in some maximal subgroup M 0  
that contains both x and y. This is a contradiction to x being a non 2-generator. Thus, 
G\ U{M M1 max G, x E M} = 0. From the above it is easy to see that if for an element 
x of G, U{M : Mi max G, x E M1} = G then x is a non 2-generator. 	 I 

Lemma 1.2 Let X = {x} be the set in G of non 2-generators. Then 

X=U{flMj:M1 max  G,  UM, =G} 	 (1.1) 

Proof: Let x E X. By Lemma 1.1, U{M1 : M1 max G, x  M} = G. Thus wE n Mi,  
where M1 maxG, UM1 = G. This means x is in the union defined in (1.1). Also by 
Lemma 1. 1)  if an element y of G lies in an intersection of matimal subgroups of G, {M}, 

U Mi  = G, then y is a non 2-generator. 	 I 
The next Lemma shows a connection between covering of a group G, rk(G) = 2, and 

the quantity of 2-generators. 

Lemma 1.3 The set of non 2-generators is trivial if for any covering of G, G = 
Gi  < G for all 1 <i <m, implies fl,1  = {1}. 

Proof: Assume X, the set of non 2-generators, is trivial. 	Let G = ut1G1, G1 < G 
for 1 < i < in, be a covering of G. 	Assume 1 54 x E flf 1G. 	Let M1  be a maximal 
subgroup of G, G1 < Mi  < G for all 1 < i < iii. As x E M1, 1 < i < in, we have 
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G = U{M M1 max G, x E M1 }. By Lemma 1.1, x is a non 2—generator. This contradicts 
X trivial. Thus, n!11 Gi = {1}. 

Next we assume that for any covering of G, G = U7it1 G1, G1 < G for all 1 < i < in, 
implies nL1G1 = {1}. Assume x E G, x 0 1, is a non 2—generator. By Lemma 1.1, 
G = U{M€ M1 max G, x E M1 }. Thus there exists a covering of G with a non trivial 
intersection. This contradicts the assumption. Thus, the set of non 2—generators is trivial. 

I 

1.3 The Frattini subgroup 
It is natural to see the connection between the Frattini subgroup and non 2—generators. 

Frattini subgroup. The Frattini subgroup of a group G, Frat(G) is defined 

Frat(G) = fl{M1 M max G} 

The Frattini subgroup is defined in terms of non generators, as the next Lemma shows. 

Lemma 1.4 Frat(G) is generated by the elements x of G such that for any subset X of G, 
(x,X)=G#(X)=G. 

Proof: Let x E Frat(G). Suppose X is a subset of G such that (x, X) = G, but (X) < G. 
Let M be a maximal subgroup of G containing X. x 0 M, as this implies, G = (x, X) :!~ M. 
This is a contradiction to x E M, for all M, M maximal in G. 

Let x E G, such that for any subset X of G, (x, X) = G = (X) = G. Suppose 
max G, x 0 M. This means that G = (x, M). But this means M is a subset of G 

such that (x, M) = G, (M) = M < G and a contradiction. 	 I 

Lemma 1.5 Let G be a finite group, with rk(G)=2-. Then 

Frat(G) < {non 2—generators of G} 

Proof: If x E Frat(G) is a 2—generator, then By E G, (x, y) = G. According to Lemma 1.5 
this implies (y) = G, which is a contradiction to rk(G)=2. 	 I 

Corollary 1.6 Let S be the set of non 2-generators of G, with rk(G)=2. Then, 

IFrat(G)I > 1 =' 	 > 1 



Chapter 2 

Conjugacy classes of the symmetric 
group 

In this Chapter we show combinatorial results on the conjugacy classes of the group Sn. 

2.1 The conjugacy class 

Conjugacy. Let x, y be elements of a group G. We say x, y are conjugate if there exists 
z E G, such that, xZ = z1xz = y. 

It is easy to see that conjugacy is an equivalence relation. 

Conjugacy class. For an element x in a group G, the equivalence class of elements that 
are conjugate to x is called the conjugacy class of x. It is denoted by Cla(x). 

C(x). For an element of a group G, the subgroup of elements y € G such that [x, y] = 
x 1yxy = 1 or xy = yx, is denoted by C(x). 

Lemma 2.1 Let x be an element of a finite group G. Then, 

[G: C(x)] = JCI(x)j 

Proof: Each member y € Cl(x) can be represented by a power of x by some element z € G, 
such that 2f = Y. 

We choose a set of such representatives Z = {z1}. Observe that II = IC1(x)L We 
define the natural mapping 

F: Z -* Left cosets of C(x) 

by F(z) = zC(x). 
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F is one-to-one mapping, because 

F(zi ) = F(z2) 	z1C(x) = z2C(x) 	zjz2 E C(x) 

X2' 
Z2 = x 	= x12 

Also F is onto, as for each coset yC(x) we choose the representative z E Z such that 
XZXY. 	 I 

2.2 Conjugacy classes in S,. 

In the symmetric group each permutation can be represented by a product of disjoint cycles. 

Decomposition of a permutation. Let x E S,. Let x = rir=1 G1 where G1, 1 < i < m 
are disjoint cycles and 1G11 :~ 1G1+1I (lCd denotes the length of the cycle C1). This is 
called the decomposition of x. Sometimes the cycles of length one are omitted from the 
decomposition, so it is understood that points that are omitted, are fixed under the action 
of X. 

The decomposition is unique up to the order of cycles in the decomposition that have 
the same length, and the writing order of the points of each cycle. 
Example 

(1,2,3)(4,5,6) = (4,5,6)(1,2,3) = (2,3,1)(6,4,5) 

Type of permutation. Let x,y be permutations in S,, with decompositions 

In 

x=[JG1, y=]JJD. 
i=1 	 2=1 

including the cycles of length one. If in = 1, and JCil = J Di J for all 1 < i < in, we say that 
X, y are of the same type. It is easy to prove that two permutations have the same type 

they are conjugate in S,. 

Usually calculating the conjugacy classes of an arbitrary group is time consuming. All 
algorithms are polynomial in the size of the group, and some faster algorithms utilize special 
qualities of the group, such as p—group, solvability, etc. 

Due to the combinatorial structure of S,, calculations are simpler. Namely it is easy 
to quickly give the number of conjugacy classes, the size of each class, and output a repre-
sentation of the class. 

2.2.1 Sizes of the conjugacy classes in 5,-, 

First we show an equation for Cl(x)I, for a permutation of a known type. 
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Lemma 2.2 Let x E S,, with a cycle decomposition x = fl7L1 C (Cycles of length one are 
included). Let ki be the number of cycles of length i. Then, 

n! 
fJ? ikik.! 

2• 

(2.1) 

Proof: There are n! ways of writing then points { I,.. . , n} as a product of Ic1 cycles of length 
1, Ic2 cycles of length 2, ..., kn cycles of length n. many of these yields the same permutation. 
Any i-cycle can be started in any of i places. For example (1,2,3) = (2,3,1) = (3,1,2). 
So, there are iki ways of writing the Ic1 i-cycles, keeping the i-cycles in the same writing 
order. 

In addition, the ki i--cycles can be permuted in Ic1! ways. For example, 

(1, 2) (3, 4) (5, 6) = (1, 2) (5, 6) (3, 4) = (3, 4)(1,2)(5, 6) = 
= (3, 4) (5, 6) (1, 2) = (5,6)(1,2)(3,4) = (5,6)(3,4)(1,2) 

As the above changes are the only permitted, the Lemma follows. 
Example 

The size of the conjugacy class of (1,2)(3,4,5) in S7. 
We have, 

Ic1 = 2, 	 as the points 6,7 are fixed 
Ic2 = 1, 
Ic3 = 1, 
Ic4 = Ic5 = Ic6 = Ic7 = 0 

Thus, 

	

Cl '( (1, 2)(3,4,5) H = 	 420 (12 . 20(21 .10(31 .1') 
=  

Using (2.1) we can conclude the following. 

Lemma 2.3 Let n > 2. For any x E S,, 

Cl(x) S IC'k(i,2,...,n — i))l 	 (2.2) 

Proof: The proof is by induction on n. For n C 5, it is easy to verify (2.2). By (2.1) we 
need only to prove that for any {Ic}1, such that >IL1 iIc; = n, 

	

n! 	n! 

fJL1 ikiIc€! ~ n — i 

or, 
fljk(Ic! > n - 
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Assume for all it' <n. 
Suppose there is an index i0, 1 < io < it such that 2 < i0k10 5 it —3. We denote a = i0 lc10 . 
By induction, 

fJ 	= jOk.! II jkk5! > i0kj0 (m - 	 - 1) = a(n - a - 1) 
1=1 	 jq4o 

Thus it is sufficient to prove 

n - I < a(n - a -1) 
4z. a2 +a-1<(a—i)n 	a>2 

a2 + a —1 
a — i 

a2 -1 	a 
+ 	~it a — i 	a—i 

$ a+i+ 	
a 

a—i 
but, 

a+i+ 	
a 	

-3+3=n ~it 
a—i 

• We are left with the cases that all positive ik, 1 < i < it, satisfy either 1k1 = i or 
ikj>n-2. 

• If there is an index i0 such that iokj0 = it, then for all other indexes i 54 i, k = 0. 
Thus, 

	

J1 ik'ki! = jo k 0 ! 	~ 	= it ii = n> -1 

. If there is an index i0 such that i0lcj,3 = ii - 1, then we know i0 54 1 and, 

	

1 	i=•i 
k1= k i=i0 

	

( 0 	ii,i0 

Again, 

fJjkiki = (11 i)(i 0 kjo!) 
= i2Ok.! > jo /c10 = ii —1 

• If there is an index i0 such that i0 lc10 = n - 2, then we are left with an integral part 
of ii of size 2, meaning either k = 2, i0 54 1 or k2 = 1, i0 54 2. In either of the cases 
there is an index i 1, i i E {1,2} and i1 lc 1 = 2. 

• The case that all positive iki equal us clearly impossible. 

The Lemma follows. 
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2.2.2 The number of conjugacy classes, the function p(n) 

Next we wish to enumerate the conjugacy classes of S,. That is, to count how many classes 
there are, and output a representative for each class. As explained above, it is enough to 
output for each class the type of the class members. First we shall use a well known result 
from [3] to count the number of classes. 
Partition of an integer. Let n be a positive integer. A partition of n is a representation 
of n as the sum of positive integral parts. For example, all the partitions of 5 are 

5=5=4+1=3+2=3+1+1=2+2+1=2+1+1+1-1+1+1+1+1. 

p(n). We denote the number of partitions of an integer n by p(n). Thus, p(5) = 7. 

Clearly, the function p(n) gives exactly the number of conjugacy classes in S,. Each 
type is defined by a cycle decomposition, that can be thought of as a partition of n. 

Generating formal power series. A generating formal power series of a function 
f: Z —* Z, is a series of the form, 

F(x)=Ef(n)x 
nEZ 

The generating formal power series of p(n) was found by Euler and is, 

1 	 1 	 00 

fl t1(1 - x = ) 	(1 - x)(1 - x2)(1 — 	. . 

Example 
The intuition of the structure of the generating function F(x) can be explained by the 

following example. 
Let us look at a partition of 8, 8 = 1 + 2 + 2 + 3. We wish to see which elements of the 

generating function contribute a unit to the coefficient p(B) of x5, in accordance with this 
particular partition. 

1 
= 1+x+x2 +... contributes x 

1 —x 

1 =1+x2 +x4 +... contributes x4 =x2 x2  
1— x2  

1 	
= 1 + x3  + x6  +... contributes x3  

1— x3 
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Using the formal power series it can be proved that p(n) obeys the following recursive 
formula, 

p(n)—p(n— 1) — p(n — 2) + p(n — 5) +...+ 	 (2.3) 

('),p(n - k(3k - 1)) + (_1)k p(n  — k(3k + 1)) +... = 0 

We would like to show another, more intuitive method of calculating p(n), that will also 
produce the partitions, permutations types and representatives of conjugacy classes. 

Actually we show something a little stronger. 

Restricted partitions of an integer. Let rn,n be two positive integers, with m < ii. 
We call all the partitions of ii, with integral parts > m, restricted partitions of ii by M. 

We denote their number by P(n,m). 

Examples 

1. Clearly p(n) = P(ri, 1). 

2. P(7,2) =4, because 7=2+2+3=2+5=3+4=7. 

P(i,j). Next we define the following function, which is recursive in two variables. For any 
two non-negative integers i,j, 

10 	 0<i<j 
1 	 i=0 	 (2.4) 

I. 	P(i - k, k) otherwise 

Lemma 2.4 For any two positive integers m, n such that m 

P(n,m) = P(rt,rn) 

Proof: As promised, the proof is very intuitive. We need to explain the logic involved in 
a single traversal down the recursion tree, and the stop mechanism that determines the 
leaves of the recursion tree. 

First we observe that at no time during the recursive process, the variables i, j are 
negative integers. This is because we start off at the root with integers m, ii, m < n, and 
by the definition of P(i,j) in (2.4) this case is not possible. 

Suppose we arrive at a node of the recursive process with 0 < I <j. As there is no way 
to partition i with integral parts > j, we conclude that the path we traveled from the root 
to this node (= the partition) is illegal. Therefore we return 0. 

Suppose we arrive at a node with I = 0. This means the path from the root to this node 
defines a perfect partition of the integer n. Therefore, the node is a leaf, and we return a 
unit that symbolize the legal partition. 
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The last case is the case of j < i. This case explains the logic of P(i,j). Suppose we 
decide to count all the partitions of i that have at least one integral part of size j. This 
means we take "off" i a part of the size j, and recursively calculate P(i - j,j). 

Suppose i > j. To calculate the number of partitions of i that have integral parts of size 
> j+1, and have at least one part of size j+1, we recursively calculate P(i - (j + 1),j + 1). 

Summing up over all integers j :5 k 	we have for j < i 

P(i,i)=E P(i —k,k) 

This concludes the proof. 	 I 

Corollary 2.5 The recursive algorithm described in Lemma 2.4 calculates all the conjugacy 
classes of S. 

Proof: If we obseve carefully the structure of the recursive process defined by P(i,j), we 
see that during the process we are able to calculate not only the number of partitions, but 
output them expliuitly. Each partition is described by "legal" traversal down the recursive 
tree, and the nodes of the traversal contain the integral parts of the partition. As a partition 
of ii represents a type of permutation, which in turn represents a conjugacy class of S,, 
representatives of I he classes can be listed by the algorithm. 	 I 
Examples 

1. As we have shown, p(5) = 7. Using P(i,j) we have 

:& P(5, 1) = P(5, 1) 
P(4, 1) + P(3, 2) + P(2,3) + P(1,4) + P(0, 5) 

P(4, 1) + P(3,2) + 1 

=\ [P(3, 1) + P(2,2)  + P(1,3) + P(0,4)] + [P(1,2) + P(0,3)] + 1 
= [P(2,1) + P(1,2) +P(0,3)] +P(0,2) +3 

= P(2,1)+5 
= P(1,1)+P(O,2)+5 

= P(1,1)+6 
= P(0,1)+6 
=7 

2. We have shown that P(7, 2) = 4. 

E(7,2) = P(7,2) 

= P(5, 2) + P(4, 3) + P(3, 4) + P(2, 5) + P(1, 6) + P(O, 7) 
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= P(5,2)+P(4,3)+1 

= [P(3, 2) + P(2, 3) + P(1, 4) + P(O, 5)] + [P(1, 3) + P(O, 4)] + 1 

= P(3,2)+3 

= P(1,2)+P(0,3)+3 

=4 

3. As stated before in Corollary 2.5, using the recursive algorithm of Lemma 2.4, we 
can list all the conjugacy classes of S,. We show this for ii = 5: 

P(5,1) 

(1) 	 (1,2 	(1,2,3,4,5 

P(4,1) 	 P(3,2) 	P(0,5) 

(2) 	 (2,3) 	(2,3,4,51 	(3,4,5 

P(3,1) 	 P(2,2) 	P(0,4) 	P(0,3) 

(3) 	 (4,5 

P(0,3) 	P(0,2) 

(4)j(4,s 

P(1,1) 	P(L) 

(5) 

P(O,1) 

Collecting all the above legal traversals down the recursion tree, we list representatives 
for each of the seven conjugacy classes of S5: 

1) (2) (3) (4) (5) 

(1)(2)(3)(4,5) 

(1) (2)(3, 4,5) 

(1)(2, 3)(4, 5) 

(1) (2, 3, 4, 5) 

(1, 2)(3, 4,5) 

(1, 2, 3, 4, 5) 
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The function p(n) can be shown [3] to have an upper bound of the form: 

p(n) 	Ic = 7r V3; 
Using any one of the recursive equations of p(n), (2.3) or (2.4), the following values of 

p(n) can be calculated: 
P(l) = 1 
p(5) = 7 
p(10) = 42 
p(20) = 627 
p(50) = 	204,226 
p(lOO) = 	190,569,292 
p(200) = 	3,972,999,029,388 



Chapter 3 

Generators of S.,-,, and A.,-,, 

The main theorems we will prove in this Chapter are, 

Theorem 3.1 For every permutation x E S,-, x 	1 there exists a permutation y E S, 
such that (x, y) = S,, except for the case when x is in the Klein subgroup of 84 . 

Theorem 3.2 For every permutation x E A, x 1, there exists a permutation y E A 
such that (x, y) = A. 

Using Lemma 1.3, we have an interesting application of the above Theorems. 

Corollary 3.3 Let n > 4. Let C = An or S,, C 84. Let C = UL1C, Gi  < C for all 
1 < i < in, be a covering of G. Then fl 1G1 = {1}. 

3.1 Preliminaries 

Before we prove the above theorems, it is required to prove a series of small Lemmas. The 
following Lemmas prove that some combinations of cycles generate 8,. or An. Some of the 
Lemmas are well known. 

Transposition. A cycle of length two is called a transposition. 

Lemma 3.4 The transpositions in S. together generate S,. 

Proof: As explained in Chapter 2, each element of S, can be written as a product of disjoint 
cycles. Therefore it is sufficient to show that each cycle can be written as a product of 
transpositions, all defined over the points of the cycle. 

Let x = (ai ,a2,.. . ,a,) E S,. We can write 

x = (ai,a2,. . .,ak) = (ai,a2)(ai,a3)(ai,a4). . 

I 

13 
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Lemma 3.5 The transpositions (1,2), (1,3),... ,(1, ii) together generates 5,.. 

Proof: Using Lemma 3.4, it is sufficient to show that any transposition (i, j) can be gener-
ated. 

(i, j) = (1, )'d) = (1,j)(1, i)(1,j) 

I 

Lemma 3.6 The transpositions (1, 2), (2,3),..., (n - 1, n) together generate S,. 

Proof: Using Lemma 3.5 it is sufficient to show that any transposition (1,i), 2 < i < n 
can be generated. 

(1,i) = (i - 1,i) .. (3,4)(2,3)(1,2)(2,3)(3,4) . . ( - 1,) 

I 

Lemma 3.7 The transposition (1,2) and the cycle (1,2,... , ii) together generate 5,.. 

Proof: By Lemma 3.6 we need only write each transposition of the form (i, i + 1) as a word 
in (1, 2), (1,2,... ,rz). This is achieved as follows: 

(2,3) = (1, 2)(12.3.....n) 

and generally, 
(i,i + 1) = (1,2)d129t10 for 1 < I <ii - 1 

I 

Lemma 3.8 The transposition (1,2) and the cycle (2,3,. .. , ii) together generate S,2 

Proof: By Lemma 3.5 we need only write each transposition of the form (1, i) as a word in 
(1, 2), (2, 3,. .. ii). This is achieved as follows: 

(1,3) = (1,2)(213.....n) 

and generally, 
(1, i) = (1, 2)(2.3.....n)(2) 	

for 2 < i < n. 

I 
Next we prove similar results for the Alternating Group (As) 
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Lemma 3.9 The 3—cycles (cycles of length 3) together generate A. 

Proof: Let x E A. As in Lemma 3.4, x can be written as a product of transpositions. 
Because x E A, the number of transpositions in the product is even. Thus, it is sufficient 
to show that each product of an adjacent pair of transpositions can be written as a product 
of 3—cycles. 

Let i,j,k,l be integers, i $ j, k $ 1, 1 < i,j,Ic,l < n. We look at the product of the 
two transpositions (i, j), (k, 1). 
If i = Ic, j = I then (i, i) . (k, 1) 
If i$ Ic, j = 1 then (i, j) . (k, j) = (i,k,j). 
The last case is i $ Ic, i $ 1. In this case we can write 

(i, j) . (k, 1) = (i, j) (j, Ic). (j, Ic). (k, 1) = (i, Ic,j)• (j, 1, Ic) 

I 

Lemma 3.10 The cycles of the form (i,j, Ic), i <j < Ic, together generate A. 

Proof For any 3—cycle x = (i, j, Ic) we can assume i <j, Ic. Otherwise, we simply rewrite 
the 3—cycle in that form. Next, if j > Ic, then x2 = (i, k, j), has the required property. As 

(z12 = x for 3—cycles, the Lemma follows. 	 I 

Lemma 3.11 The 3—cycles (1,2, 3),(2, 3,4),... (n —2, n - 1, n) together generate A. 

Proof: Let H < A be the subgroup that is generated by the 3—cycles of the form 
(i,i+1,i+2), 1<i<ri -2. 

1. First we prove that each 3—cycle x = (i, i + 1, Ic), i + 2 < Ic < n, is in H: 
Observe that for i < n - 4, 

(i, i + 1, i + 2)(t+2t+3+4) = (i, i + 1, i + 3), 

and generally, 

(i,i + I , j)(j.j+1J+2)  = (i,i +I, j  + 1), for i + 2 < i !~ ri —2. 

This means that for i < n —4, all the 3—cycles (i, i + 1, Ic), i + 2 < Ic < n - 1, are in 
H. But for i <n —4 we can also generate (i,i + 1,n) by 

(i, i + 1, ?2 - 1)(Th_2Th_I) = (i, i + 1, n). 

We are left with the case ofrj —3 <i < n- 2. For i = n -2,  (it —2,n - 1,n) € H, 
by definition. 

So, we are left with the case i = it —3. We have to prove that (it —3, it —2, it) € H. In 
the case of it < 5, it is easy to verify that the lemma holds, so we can assume n > 5. 
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But (n-4,n-2,n-3) = (n-4,n-3,n-2)2  E H, because (n-4,n-3,n-2) E H. 
Also (n - 5, n - 4, n) E H, as we already proved. Therefore, 

(n -2, n -3, ri) = (n -4, n -2, n - 3) (,-5,,-4,n)E H. 

(n - 3, n - 2, n) = (n - 2, n - 3, ri)2  E H 

2. Using Lemma 3.10, we need only prove that each 3-cycle (i,j, k), i cj < k, belongs 
to H. 

Ifj =i+1, k=i+2, weare done. 

Otherwise, we know that the 3-cycles (i, i + 1,j), (i, i + 1, k) E H. So (i + 1, i, j), 
(i + 1, i, k) E H too. Using these two 3-cycles, 

(i, k, j) = (i + 1, i, )(t+1ik) E H, and (i, k, if = (i, j, lv). 

Therefore (i,j,k) E H. 

This conclude the proof. 	 I 

Lemma 3.12 Let n be odd, n > 3. The cycles (1,2,3), (1,2,3,... , n) together generate 
A. 

Proof: If n = 3 we are done. Else, observe that 

(1,2,3) (1,2,3,...,n) = (2,3,4) 

and generally, 

(1,2,3)023.....mY = (i+ 1,i + 2,1  + 3) for 1 < i < n -3. 

By Lemma 3.11, the 3-cycles (i + 1,i + 2,i  + 3) generate A. 	 I 

Lemma 3.13 Let n be even, n > 4. The cycles (1, 2,3), (2,3,. . . , n) together generate A. 

Proof: We have 
(1,2, 3)(23  ..... it) = (1,3,4) 

(1,3)4) (1,2,3)2 = (1, 3, 4)(13.2) = (2,4,3) 

And (2,3,4) = (2,4,3 )2  is generated. 
By Lemma 3.12, all 3-cycles (i,i + 1,i + 2), 2 < i < ii - 2, are generated using 

(2,3,4), (2,3,..., n). The Lemma follows. 

Lemma 3.14 Let n be odd, n > 5. The cycles (1,2,3), (3,4,..., n) together generate A. 
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Proof: We have 
(1,2,3)( '— )  = (1,2,4) 

(1,3,2)(1!214) = (2,3,4) 

If we look at the cycles (2,3,4), (3, 4,. . . , n) acting on the letters 12,. . . , n}, we can use 
Lemma 3.13 to conclude that these two cycles generate the Alternating group over the 
points 12,. .. , n}. Particularly, all the 3—cycles (i, i + 1, i +2), 2 5  i < n —2, are generated. 
Thus, the cycles (1,2,3), (3,4,..., n) generate all the 3—cycles (i, i + 1, i + 2), 1 < i < n-2. 
Using lemma 3.11, we conclude that (1,2,3), (3,4,. . . , n) generate A. 	 I 

Theorem 3.1 says we can find a complement for any 1 54 x E S,, except for a very 
special case. To prove the theorem, we will first find complement for permutations that 
have special qualities, and use that in the theorem. 

But before we proceed to look for complements for every permutation in S,, it is 
important to ask if it is necessary. The answer is that we need only to find a complement 
for one representative of each conjugacy class in S,. In other words, if a permutation x has 
a complement y in S,, such that (x, y) = S,, then any permutation z that is of the same 
type as x can be complemented to a base of S,. 

For the case of A, it is not true that a conjugacy class is determined by the type of the 
permutation. For example, (1,2,3,4,5) and (1,2,3,5,4), are not in the same conjugacy 
class in A5. They are only conjugate in S. 

The following lemma shows conjugacy in S, is sufficient. 

Lemma 3.15 Let C be 5,., or A. Let x E C. Let y E Cls(x). Then x has a complement 
in 0 iffy has a complement in C. 

Proof: Let c be a complement to x in C. Since y is conjugate to x in S,, there exists 
z E S,, such that a? = y. Then, because C 1 

C = Cz = (x, c)Z = (x2 , cZ) = (y, cZ) 

So, cZ  is a complement to y. This concludes the proof. 
For the case x = y, in Lemma 3.15, observe that we can also say something about the 

quantity of complements for x: 

Corollary 3.16 Let C = S, or A. If c E C, is a complement to x E C. then Vz E CQ(x), 
cz is also a complement. 

Examples 
As we proved earlier, the transposition (1,2) has as a complement in 85, the cycle 

(1, 2, 3, 4, 5). 

1. (2,3) is of the same type as (1,2) and so in the same conjugacy class. They con-
jugate using (1,3), (1,2)('13) = (2,3). Therefore, (1,2,3,4,5)(1, ) = (1,4,5,3,2) is a 
complement to (2,3). 
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2. (3,4) E Cs5((1, 2)), therefore, (1,2,3,4, 5)(34) = (1,2,4,3,5) is also a complement for 
the transposition (1,2) in 85 . 

We shall frequently use the following result. 

Lemma 3.17 Let G be a group. Let x,y,z e G with the following conditions: x = yz, 
(O(y), 0(z)) = 1, [y, z] = 1. Then y,z e (x). 

3.2 Generators of Sn 

First we find complements for permutations with special qualities: 

Lemma 3.18 For every cycle x E S,, there exists a complement y e S,, such that 
(x,y) = S,. 

Proof: By Lemma 3.15 we can assume that x = (1,..., k), 2 < k < n. 
We will divide the proof to case analysis: 

k=n 
We simply choose y = (1, 2), and use Lemma 3.7. 

k = vi - i 
We choose y = (ti - 1,n) and use Lemma 3.8. 

We choose y = (1,2,..., n) and use Lemma 3.7. 

vi - k is even and 2 < Ic ( vi - i 
We choose y = (1,2)(k,k + 1,...,n). 

Because n - k is even, the cycle (k, k + 1,. .. , n) has odd order. So y(Th+1) 
= (1, 2). 

Also 

xy=(1, ... ,k).(1,2)(k,k+1,...,n)(2,3,...,k-1,k+1,...,n1,n,k) 

By Lemma 3.8 and Corollary 3.16 we have, 

Sn  = ((1,2),(2,3,...,k— 1,k+ 1,...,n - 1,n,k)) = (y(Th_k+) xy) :5 (x, Y) 

so, (x,y) = S,. 

vi - k is odd and 2 < Ic <vi - 1 
Wechoosey=(1,n)(k,k+1,...,n-1). 
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Again, because n - k is odd the cycle (k, k + 1,. . , n - 1) has odd order. So (') = 
(1,n). Also 

xy = (1,...,k)(1,n)(k,k+1, ... ,n-1) 

= (1,2,...,k-1,k+1,...,n-1,k,n) 

By Lemma 3.7 and Corollary 3.16 we have, 

SO (X, Y) = 5n - 

This completes the proof of Lemma 3.18. 	 I 

Lemma 3.19 For every permutation x E S,, of prime order p > 2, there exists a comple-
ment y, such that (x, y) = S,. 

Proof: By Lemma 3.15 we can assume that 

x=(1,2,...,p)(p+1,...,2p) ... (rp+1,...,(r+1)p) for r>O. 

We use case analysis: 

x = (1 ) 2,... ,p) 
was proved in Lemma 3.18. 

it 
- 

p is even 
We choose y = (1,2)(p,p+ 1,.. .,n). Then yP+l = (1, 2), and 

As the cycle (2,... ,p) is of even order, p - 1, we have 

(x(1,2))' = ( (p+1,...,2p) ... rp+1,...,(r+1)p) )P-1 

Thus, 

= (1,.. .,p) 

We conclude using the case analysis in Lemma 3.18, 

S. = ((1,... ,p),y) :~ (x,y). 



CHAPTER 3. GENERATORS OF SN  AND AN 	 20 

n - p is odd and (r + i)p < it 
We choose y = (1, n) (p,..., n — 1). Then y'=(1,n). 

x(1,n) = (1,2,...,p,n)(p+1,...,2p)"•(rp+1,...,(r+1)p) 

	

By Lemma 3.17, 	(1,2 .... p,n),(p+1,...,2p) ... (rp+1,(r+1)p) E (x(1, n)). 

	

Thus, 	(1,...,p)E(x,y) 

Using the case analysis in Lemma 3.18, 

ii p is odd and (r + i)p = n 
We choose y = (1, 2)(p,..., n — 1). Then ymP = (1,2). 

As in the previous cases it is easy to see that (1,... ,p) E (x, y). This time we can 
only use Lemma 3.18 to conclude that, 

S.-i = ((l,...,p), (1,2)(p,...,n-1)) :5 (x, y). 

But since S.-i is maximal in S. and x 0 Sm-I (it moves the point {n}), we can 
conclude that (x, y) = S,. 

Lemma 3.19 follows. 	 I 
In the next Lemma, which deals with the case of a permutation of order two, we can 

see that the special case of the conjugacy class of (1,2)(3,4) in 84  is not covered. Indeed, 
as we stated before, in this special case, a complement does not exist. 

Lemma 3.20 For every permutation x E S, of order two, there is a complement y, except 
for the case n = 4, and x is a member of the Klein subgroup. 

Proof: By Lemma 3.15 we can assume x = (1,2)(3,4).. (Ic, Ic + 1). As in the previous 
Lemma, we use case analysis. We can assume it > 4. 

= (1,2) 

was proved in Lemma 3.18. 

n odd and It >- 3 
We choose y = (1, n) (2, 3,. .., n — 1). 

yThl = 
(2,3,...,n-1) 

yTh2 = (1,n) 

XY 
n-2 = 

(1,2)(3,4) ... (k,k+1).(1,n)=(1,2,n)(3,4) ... (k,k+1) 

so, 
( xym 2)3  = (3,4)•. (k, k + 1). 

Thus, 
(1,2) = x 	(3,4) ... (k,k+1)E(x,y). 

Sn-i = ((1,2),(2,3,.. . ,n —1)) <(x,y) 
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Finally, since (1, n) E (x, y), we have by lemma 3.8, 

S,= ((1,n),(1,2,...,n-1)) :~ (x, y) 

ii even and 3 < Ic < ii 
- 

For  <k<n-3we must have n>6. We choose y=(1,n)(2,4,...,n-1). 

yfl3 = (1,n) 
= (2,4,...,n-1) 

xy 3 = (1, 2, n)(3, 4)... (/c, k + 1) 

= (3,4)... (k k + 1) 

So, as in the previous case, (1,2) E (x, y). 

We will show now how we can "climb" from 5n2 to 5,-, using the permutations we 
know that are in (x,y). 

By Lemma 3.8, ((1,2),(2,4,...,n-1)) -Sn-2• Thus (1,2,4,...,n-1) E (X, Y). 

As (1,n), (1, 2,4,... ,n—i) E (x, y), again using Lemma 3.8, they generate a subgroup 
of (x, y) which is isomorphic to S,, over the points {1, 2,4,... , n}. 

But, as x moves the point {3}, and 5n1 is maximal in S,, we have, (x, y) = S,. 

Finally, to complete the proof of the Lemma: 

ii even, ii > 4 and Ic = Ii - 1 
We choose y=(1,n-1)(2,3,...,n-2). 

Observe that in the case n = 4, this choice degenerates to y = (i, 3), which is why 
the proof does not hold for x = (1,2)(3,4) in S4. 

Y 
n-3 = (1,n-1) 

= (2,3,...,n-2) 

XY 
n-3 = (i,2)(3,4) ... (n-1,n)j1,n—i) 

= (1,2,n—i,n)(3,4) ... (n--3,n--2) 

= (1,n - 1)(2,n) 

Thus, (2,n) = (i,n —1). (i,n - 1)(2,n) E (x, y). 

From the above calculation, and by Lemma 3.8, the group generated by (2,n), 
(2,3,. . . , n - 2), over the points {2, 37 . , n - 2, n}, is isomorphic to 5n2, and is 
in (x,y). 
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From the above we know 

(3,4)(5,6). (n-3,n-2), (2,3) E (x, y) 

x(3,4)(5,6) ... (n — 3, n — 2) = (1, 2) (n — 1, n) 
(1,2)(n - 1, n) (2,3) = (1,3,2)(n - 1,n). 

Thus (it - 1,n) E (x, y) 

As in previous cases, we can use the transposition (it - 1, it) to "climb" to a group 
isomorphic to 5n-i•  We have seen that 

(2,3, ... ,n-2,n),(n-1,n)e(x,y) 

By Lemma 3.8 these permutations generate the symmetric group over the points 
12,3,..., nj.  As x moves the point { 11, and 5n-1 is maximal in S,, we can complete 
the "climbing" process and conclude (x, y) = S,. 

This conclude the proof of the Lemma. 	 I 
Using our previous results, we can now prove Theorem 3.1. 

Proof of Theorem 3.1: Let x E S,, x 1. It is obvious that there exists an integer m > 1, 
such that, xm  is of prime order. Unless x is a member of the Klein subgroup in the case 
it = 4, we can use Lemmas 3.19 and 3.20 to explicitly find y, a complement to x" in S,. 

Since ( x m , y) < (x, y), the theorem follows. 	 I 

3.3 Generators of A 

We now turn to the case of A. To prove theorem 3.2, we again prove first a series of Lem-
mas. The Lemmas constructively find complements for permutations in A, with special 
qualities. Specifically, we again find complements for cycles, and then for permutations of 
prime order. Then, we use these results, as in Theorem 3.1, to prove Theorem 3.2. 

Lemma 3.21 For every cycle x E A, there exists a complement y E A, such that 

(X) Y) = A. 

Proof: By Lemma 3.15 we can assume, x = (1,..., k) 3 < k < ii, k odd. 
We now turn to case analysis: 

It = ii (it is odd) 
We choose y = (1,2,3) and use Lemma 3.12. 

k = it - i. (it is even) 
We choose y = (it —2, it - 1, it) and use Lemma 3.13. 
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Similarly to the previous cases we can choose, y = (1,2,.. . , n) for n odd, or y = 
(2, 3, . .. , n) for n even. 

n odd (n - Az is even), n - It 2 (mod 3)  and 5 <Az < n - 2 
We choose y = (1,2,3)(k,. . 

First we observe that y € A, as a product of two disjoint cycles of odd lengths. By 
Lemma 3.17, (1,2,3),(k,. . .,n)€ (y). We have by Lemma 3.12, Ak = (x,(1,2,3)) 
= ((1,... ,k),(i,2,3))< (x,y). 

Particularly all the cycles (i,i + 1,i + 2), 1 C i < k —2, are in (x, y). 

In particular (k —2, k - 1, k) € (x, y). So 

((k-2,k-1,k),(k,...,n)) 	(X1 Y) 

and by Lemma 3.14 this group is isomorphic to A,-k+3.  Thus, all the cycles (i, i + 1 i + 2), 

k —2< i < n —2, are in (x, y). 

Using Lemma 3.11 we conclude that (x, y) = A. 

n = 7 and Az = 
We choose y = (1,6,7). By Lemma 3.14, (x, y) = A7. 

n odd (n - /t is even), n - It 2 (mod 3),  n  9  and 	It < n - 2 

We choose y=(i,n-1,n)(k,k+i,...,n--2). 

Observe that y € A, as a product of two disjoint cycles of odd length. 

As O((k,k+ 1,...,n-2)) =n — k — i i(mod 3), by Lemma 3.17, 

(1,n-1,n),(k,k+1,...,n-2)€(y). 

Therefore the group (x,(1,n-1,n)) =((1,2,...,k),(1,n-1,n))< (x, y), and by 
Lemma 3.14 is isomorphic to Ak+2. 

Particularly, (k,n - 1,n) € (x, y), so the group generated by (k,n - 1,n) and 
(k,k + 1,... ,n —2)15 in (x, y), and by lemma 3.14 isomorphic to A_k+J. 

By rewriting the points {1,.. . ,n}, in the form {1,. . .,k,n - i,n,k + 1,... ,n - 21 

we see that as all the cycles (i,i + 1,i + 2), 1 < i < n —2, are in (x, y). So again, 
using Lemma 3. 11 we have, (x, y) = A. 

n even (n - /t is odd), n - It o (mod 3) and 5 <k < n-3  
We choose y = (1,2,n)(k,...,n— 1). 

Observe y € A because it is a product of two disjoint cycles of odd length. As 
O((k,... ,n-1)) = n—k 0 (mod 3), ByLemma3.17, (1,2,n), (k,. . .,n —1) € (y). 
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The group (x, (1, 2, ii)) 	Ak+l, by lemma 3.13. Particularly, the cycle (Ic L  1, Ic, ii) € (x, y), 
so ((Ic - 1, Ic, ii), (Ic,. . .,ii)) 	(x, y), which by lemma 3.14 is isomorphic to A_k+2. 

By rewriting the points {1,.. . , n} and using similar arguments as in the previous 
case, (x,y) = A. 

ii even (ii - Ic is odd), ii - Ic o (mod 3)  and  5  <Ic <n-3 
We choose y = (1,2,3)(Ic - 1,Ic,... ,n). 

Observe y € An  as it is a product of two disjoint cycles of odd length. 

As O((Ic - 1,Ic,. . ,rz))= i-i - Ic +2 2 (mod 3), By Lemma 3.17, 

(1,2,3),(Ic-1,Ic,...,n) € (ii). 

By Lemma 3.12, ((1,2,3), x) = ((1, 2,3),  (1,..., Ic)) = Ak, so AA;  :5 (x, y). Particu-
larly, (Ic-2,Ic— 1,Ic)€ (x, Y). 

This means that ((Ic - 2,Ic - 1,Ic),(Ic - 1,Ic,... ,n)) 	(x, y) and by Lemma 3.12 
((Ic-2,Ic—1,Ic),(Ic-1,Ic, ... ,rz)) —A_k+3. 

Thus, all the cycles (i,i-1-1,i+2), 1 < i <n-2 are in (x, y), and using Lemma 3.11, 
(x,y) = A. 

The Lemma follows. 	 I 

Lemma 3.22 For every permutation x € A of prime order p > 3, there exists a comple-

ment y € A, such that (x, y) = A. 

Proof: By Lemma 3.15 we can assume 

x=(1,2,...,p)(p+1,...,2p)(rp+1,...,(r+1)p), for r>O 

Again we use case analysis. 

X = GL' .. . ,P). 
Was proved in Lemma 3.21. 

odd (ii - p is even) and ii - p Z 2 (mod 3). 
We choose y = (l,2,3)(p,... ,n). 

By Lemma 3.17, (1,2,3),(p,...,n) € (y). 

x(1,2,3)2  = x(1,3,2) 
= (1,2)  ... ,p).(1,3,2).(p+1, ... ,2p) . .. (rp+1,...,(r+1)p) 
= (3,4,...,p)(p+1,...,2p)" (rp+1,...,(r+1)p) 

By Lemma 3.17, 
(3,4,... ,p),(p+ 1,. 	(rp + 1,... ,(r + l)p) € (x(1,2,3)2 ). 

So, 	(1, ... )p)€(x,y). 
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Using the case analysis of Lemma 3.21, 

An = ((1,.. .,p),y) :~ (x, Y). 

odd (n-pis even), n 
- 
p E 2 (mod ) and (r + ijp <n-2 

We choose y=(1,n-1,n)(p,...,n-2). 

By Lemma 3.17, (1,n— 1, n), (p, . . . , n — 2) E (y) 

x(1,n-1,n) = (1,2,...,p).(1,n-1,tz).(p+1,...,2p) ... (rp+1,...,(r+1)p) 
= (1,2) .... p,n-1,n)(p+1,...,2p) ... (rp+1,...,(r+1)p) 

By Lemma 3.17, 
(1,2) ... ,p,n - 1, n), (p + 1,... ,2p) .. (rp + 1,..., (r + l)p) E (x(1,2,3)2). 
So, 	(1, ... ) p)E(x,y). 

Using the case analysis of Lemma 3.21, 

A. = ((1,...,p),(1,n— 1,n)(p,...,n-2)) 	(x, y) 

odd (n 
- 

p is even), n 
- 
p E 2 (mod ) and (r + i)p = n - 1 

We choose y=(1,2,n)(p,...,n-2). 

By Lemma 3.17, (1,2,n),(p,. .. ,n-2) E (y) 

x(1,2,n) = (1,2,...,p).(1,2,n).(p+1,...,2p) ... (n—p-1,...,tz-1) 
= (1,n)(2,3,...,p)(p+1, ... ,2p) . .. (n—p-1,...,n—l) 

(x(1,2,n))' = ((p+1,...,2p) ... (n—p-1,...,n-1fl1 

Thus, 	(1,... ) p) E (x,y). 

((l ) 2, n), (1,... ,p)) is a group isomorphic to A 1 by Lemma 3.13. 

In particular (p 
- 

2,p - 1, p) E (x, y), so the group ((p - 2, p - 1, p), (p,..., ii - 2)), 

	

which by Lemma 3.14 is isomorphic to 	is in (X1 y). By rewriting the points 
{1, 2,. . , ii —2, n} and using lemma 3.11, it is easy to see that the Alternating group 
over the points {1,2,...,n-2,n} is in(x,y). 

To complete the proof of this case we use the fact that x moves the point in - 11. 
The cycle (n—p-1,...,n-1)E(x,y),because 

(n—p-1,...,n-1)=x((1,...,p) ... ((r-1)p+1,...,rp)' 

We can use the cycles (n—p— 1,n—p,n—p+1),(n—p— 1,... ,n— 1) to generate the 
Alternating group over {n—p-1,...,tz-1}. Jn particular (n-3,n-2,n-1) E (x, Y), 
and because ii is odd, by Lemma 3.14 

A=((n-3,n-2,n-1),(1,n,2,...,n-3))(x,y) 
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n odd (n - p is even), n - p E 2 (mod 3)  and (r + i)p = n 
We choose y = (1, 2,3)(p,..., n — 2). 

Again, (1,2,3),(p,...,n-2) E (y). 

x(1,2,3)2  = x(1,3,2) 

= (1,2)  ... ,p)•(1,3,2).(p+1,...,2p) ... (n—p,...,n) 

= (3,4,...,p)(p+1,...,2p) ... (n—p,...,n) 

	

By Lemma 3.17, 	(3,4,... ,p),(p+ 1,... ,2p) 	(n — p,. . . ,n) E (x(1,2, 3)2).  

	

Thus, 	(1,...,p)e(x,y). 

(1,2,3) together with (1,. . p) generate A,, 	(x, y). As in the previous case, using 
(p-2,p— 1, p), (p,...,n-2) E (x, y) it is easy to see, A_2 	(x,y). 

Using the fact that x moves the points {n —1, n}, and applying similar arguments to 
those of the previous case, (x, y) = A. 

n even (n - p is odd), n - p o (mod 3)  and (r + i)p < n. 
We choose y = (1,2,n)(p,. . ,n —1). 

Again, (1,2,n),(p, .... n-1)e(y). 

x(1,2,n) = (1,2,...,p).(1,2,n).(p+1,...,2p) ... (rp+1,...,(r+1)p) 

= (1,n)(2,3,...,p)(p+1,...) 2p) ... rp+1,...,(r+1)p) 

(x(1,2,n))' = 

Thus, 	(1,... ) p) E (x,y). 

As in the previous cases using the cycles (1, 2, n),(1,. .. ) p),(p,. ,n-1) E (x, y), we 
can generate the Alternating groups over the points { 1,. . . , p, n} and {p-2,...,n-1I '  
use rewriting of points and Lemma 3.11 to conclude, 

(x,y) = An- 

n even (n - p is odd), n—p o (mod 3)  and (r + i)p = n 
We choose y = (1, 2,3) (p,... , n — 1) 

Again, (1,2,3),(p,...,n-1) E (y). 

x(1,2,3)2  = x(1,3,2) 

= 
= 

	

By Lemma 3.17, 	(3,4)  ... ,p),(p+1,...,2p) .. . (n—p,...,n) E (x(1,2,3)2). 

	

Thus, 	(1)  ... ,p)E(x,y). 
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Using the cycles (1,2,3),(1,.. .,p),(p,.. .,n - 1) E (x,y), it is easy to see that 
A.1 :5  (x,y). 

It is easy to see that the last cycle of x, (n -p,.. , n), belongs to (x, y). As the cycle 
(n—p,n—p+1,n—p+2) belongs to (x,y), using Lemma 3.12, (n-2,n-1,n) E (x,y). 

Lastly, as it is even, by Lemma 3.13, 

An  = ((1,... ,n - 1), (n - 2,n - 1,n)) < (x,y). 

This completes the case analysis, and concludes the proof. 	 I 

Lemma 3.23 For every permutation x E An  of order two, there exists a complement y, 
y  A, such that (x,y) = A. 

Proof:By Lemma 3.15we can assume x=(1,2)(3,4)jk,k+1) for 3kn-1. 
Again we use case analysis: 

X = ( 3.,2)(3,4) and n = 4 
We choose y = (1,2,3). 

xy = (1, 3,4) 

xy2  = (2,3,4) 

By Lemma 3.13 A4  = ((1,2,3),(2,3,4)). Thus, (x,y) = A4 . 

n even, n > 6 and n o (mod 3) 
We choose y = (1,2,3)(4,. . ,n). Observe (1,2,3),(4,. .. ,n) E (y). 
If k > 7 then, 

x . (1,2,3) = (1,2)(3,4) (1,2,3). (5,6)• 	(/c,k + 1) 

= (1,3,4)(5,6)..• (k,k+1) 

So for all k > 3 (1,2)(3,4), (1,3,4) E (x,y). As (1,2)(3,4) (1,3,4) = (1, 2,3), using 
the arguments of the last case, A4 5  (x,y). 

Using previous methods, it is easy to see A = (A4,(4,..., n)). Thus, (x, y) = A. 

n even, n 6, n o (mod 3) and k = 3 
We choose y = (2, ... ,ti). 

xy = (1,2)(3,4) (2,..-,n) = (1,3)(4,5) 

= (1,2)(3,4) (1,3)(4,5) = (1, 5)(2, 3) 

= (1,2)(3,4) (2,n,n-1,...,3) = (1, n)(2, 3) 

Thus, 	(1,5)(2,3) . (1,n)(2,3) = (1,5,n) E (x,y) 

(1, 5, ri)T  = 
(1, 5,  )(12)(34) = (2, 5, ri) 
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By Lemma 3.13, H = ((l, 5, vi), (2,5, ti)) is a group isomorphic to A4, over the points 
{1,2,5,n}. In particular (1,5)(2,n) E H: 

(1,5)(2, 3) . (1, 5)(2, vi) = (2, 3, vi) € (x, y). 

H1 = (H, (2,3, n)), is a group isomorphic to A5, over the points 11, 22 3,5, n}, and 

H1 < (x, y). Using previous methods it is easy to see 
An = (H1,(2,. . .,n)). Thus, (x, y) = A. 

it even, it > 6, it o (mod 3) and Ic >_ 7 
We choose y = (1,3,5)(6,. . .,n). Observe (1,3,5),(6,.. . ,n) E (y). 

As k > 7, 

x (1,3,5) = (1,2)(3,4)(5,6) . (1,3,5). (7,8)••• (k,k + 1) 

= (1,2,3,45,6)(7,8)••. (k7 k+1) 

(x (1, 37 5))2 
= (1,37 5)(2, 4,6). 

Thus 	(274,6) E (x,y). 

H = ((2,4,6),(61 ... vi)) is a group isomorphic to A_3, over the points {2, 4,6,..., n}. 

As in previous cases, we start a "climbing" process from H to A. 

(6,7,8) € H. Also (1,2)(3,4)(5,6)(7,8) E (x,y), as it can be written as product of 
and a permutation of order two in H. We have, 

(1, 2) (3, 4) (5, 6) (7, 8) . (6,7,8) = (1, 2) (3, 4) (5, 7, 6). 

Thus (5,6,7) E (x, y), and so H1 = (H, (5,6,7)) which is isomorphic to A_2 over 
the points 12, 4, 5,. .. , n}, is in (x, y). It is easy to see that An = (H1 , x). Thus, 
(x,y) = An - 

n odd 
Remark As we stated before, there are usually many complements to a given permu-
tation. Up to this point in the proof, for a given permutation x E An,we chose a com-
plement of a particular type. Namely, the complement was composed of two disjoint 
cycles, one of length three and the other of length 1, with conditions: 1 1 (mod 2), 
10 0 (mod 3). Thus, we were always able to "separate" these two cycle, and show 
that together with x, they generate A. In the case x of order two and ii odd there 
are sometimes no such complements. For example, in the case x = (1, 2)(3, 4) and 
ii = 7, all the complements are of two types: 7-cycles or products of 2-cycle by a 
5-cycle. 

We choose y = (1, . . . , n). 

We argue (1,2,n) E (x,y). If so, then by Lemma 3.12, 

= ((1,2,n),(1,.. . ,n)) :~ (x, y). 
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Let in be the unique minimal integer such that, 

2m 
= ((1,2) ... (k,k+1))(1)2m = (n—k+1,n—k+2)••(n-2,n— 1)(n, 1) 

Then it is easy to see, 

M 1 xM2I = (1,2) (I, n) z 

Where z is a permutation of order two over the points {3,. .. ,n - 1}. 

Example 

x = (1,2)(3,4)(5,6)(7,8), 	n=11. 11. 

= (3,4)(5,6)(7,8)(9,10) 

= (5,6)(7,8)(9,10)(11,1) 

Thus in = 2 and, 
x•x 2  x 4  =(1,2)j1,11)j5,6)(7,8) 

So for this example z = (5,6)(7,8). 

From the above it is obvious that 

'Tm 	 4 
I 	21' 
Illx 	=(1,2,n) 
\i=o I 

This completes the proof of this case, and the proof of the Lemma. 

I 

Lemma 3.24 For every permutation x E A of order three there exists a complement y, 
y E A, such that (x,y) = A. 

Proof: By Lemma 3.15 we can assume x=(1,2,3) ... (k,k+1,k+2) 1 < k < n-2. 
Again we use use case analysis: 

X = (1,2,3) 
This case was proved in Lemma 3.21. 

n<6 
In this case the only possibility is x = (1,2,3). 
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n is even, n > 6 and n o (mod 3) 
We choose y = (1, 2,4) (3,5,... ,n). 

Observe (1,2,4),(3,5,.. ,n) € (ii). 

If Ic > 7 then, 

x(1,2,4) = (1,2,3)(4,5,6)j1,2,4).(7,8,9) ... (k,k+1,k+2) 

= (1,2,4,5,6)(7,8,9) ... (k,k--1,k+2). 

Thus, (x(1, 2, 4))5 = ((7,8,9)... (Ic, k + 1, Ic + 2))' 

So for all Ic > 4, (1,2,3)(4,5,6) € (x, y). 

(1,2,4) (1,2,3)(4,5,6) = (2,3,5). 

By Lemma 3.14, ((1,2,4), (2, 3, 5)) = A5  < (x, y). Using previous methods it is easy 
to see that An  =(A5, (3, 5,. -  .,n)). Thus (x, y) = A. 

n is even, n> 6, n E o (mod 3) and k< n- 2  

We choose y = (1,4,n)(5,. .. ,n —1). 

Observe (1,4,n),(5,...,n-1) € (y). 

If Ic > 7 then, 

x(1,4,n) = (1,2,3)(4,5,6).(1,4,n)j7,8,9) ... (Ic,k+1,Ic+2) 

= (1,2,3,4,5,6,n)(7,8,9)(Ic,k+1,k+2) 

(x(1,4,n))7  = (7,8,9)" (Ic,k+ 1,k+ 2). 

So for all Ic > 4, (1,2,3)(4,5,6) € (x,y). 

(1, 4, n )(123)(456) = (2, 5, n). 

Using previous methods, it is easy to see that 

An  = ((1,4,n),(2,5,n),(5,. .. ,7t - 1),(1,2,3)(4,5,6)). 

Thus (x, y) = A. 

n is even, n> 6, n o (mod 3)  and It = n - 2 
We choose y = (1,3,4)(5,. .. ,n —1). 

Observe (1,3,4),(5,...,n-1) € (y). 

If k > 7 then, 

x(1,3,4) = (1,2,3)(4,5,6).(1,3,4).(7,8,9)(k,k+1,Ic+2) 

= (1,2,4,5,6)(7,8,9) (k,Ic+1,k+2). 

(x(1,3,4))5  = ((7,8,9) ... (Ic,k+1,k+2))'. 
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So for all k > 4, (1,2,3)(4,5,6) E (x,y). 

(1,3,4) (1,2,3)(4,5,6) 
= (1,5,2). 

Using Lemma 3.14 twice we have, 

H = ((1,5,2),(5,. .. ,n —1)) 	A.. 3 

and A_1 = ((1,3,4),H) < (x,y). As the last cycle in the decomposition of x is 
(ii - 2,n - 1,n) we conclude A = (x,y). 

n is odd, n > 7 and n Z i (mod 3) 
We choose y = (1,2,4)(5,.. .,n). 

Observe (1,2,4),(5,. . . ,n) E (y). 

By the same analysis of the case "it is even and it ü (mod 3)" A5 :~ (x,y). 

Using previous methods it is easy to see A = (A5,(5,. . ,n)). Thus, (x,y) = An- 

n — 7 
In this case the only possibility is x = (1,2,3)(4,5,6). We choose i = (1,4,7). 

Y 	
= (1,4,7)(1 2,3)(4 ,5 ,6) 

= (2,5,7) 

H = ((1,4,7),(2,5,7)) is the Alternating group over the points {1,2,4,5,7}. In 
particular (1,2,4) E (x,y). 

(1,2,4)(1 2,3)(4,5,6) 
= (21 3) 5). 

H1 = (H, (2,3,5)) is the Alternating group over the points {2,. . . , 71. Again, it is 
easy to see that A7 = (Hi , x). Thus (x,y) = A7. 

n is odd, n > 7, n=- 3- (mod 3) and k< n-2  

We choose i = (1,4,n)(6,. . ,n). 

Observe (1,4,n),(6,. . .,n) E (y). 

Using similar analysis to the case "it is even, it ü (mod 3) and k < it - 2" we can 
conclude (x,y) = A. 

n is odd, n > 7, n i. (mod 3) and It = n - 2 

We choose i = (1,3,4)(6,.. . ,n —1). 

Observe (1,3,4),(6,...,n-1) E (y). 

x(1,3,4) = (1,2,3)(4,5,6).(1,3,4).(7,8,9) .. . (k,k+1,k+2) 
= (1,2,4,5,6)(7,8,9) ... (k,k+1,k+2) 

(x(1,3,4))5 = ((7,8,9) .. . (k,k+1,k+2))1. 
Thus 	(1, 2, 3)(4, 5, 6) E (x,y). 

(1,3,4 )(1 ,2,3)(4,5 ,6) 
= (1,5,2). 
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By Lemma 3.14, A5 = ((1,3,4), (1,5,2)) C (x, y). Using previous results it is easy to 
see that As = ((1,2,3)(4,5,6),A5 ) and A.-, = (Ae,(,. .,n —1)) 	(x,y). 

As the last cycle in the decomposition of x is (ii- 2, n—i, ii) we conclude, (x, y) = A. 

This concludes the proof. 	 I 
Using our previous results, we are now able to prove Theorem 3.2. 

Proof of Theorem 3.2: Let x E A, x 0 1. As in Theorem 3.1, there exists an integer 
m > 1 such that xm is of prime order. Using Lemmas 3.22, 3.23 and 3.24 we can find 
explicitly y E A which is a complement to xm. 

Since (x, y) 	(x, y), the theorem follows. 	 I 

3.4 Complements of transpositions 

Up until now we concentrated on the existence of complements. As a simple example we 
shall now show explicitly all the complements of one particular conjugacy class of S,, the 
class of transpositions. 

First, a few definitions and general results. Throughout these preliminaries, G is a finite 
permutation group, IGI > 1, acting on a set X, XJ > 2. 

Transitivity. G is said to be transitive if for any two points x, y E X, there exists a 
permutation r E G, such that xr = y. (xr means r acting on x). 

From this point on, we also require of G to be transitive (on X). 

Domain of imprimitivity. A subset Y C X, IYI > 2, is called a domain of imprimitivity 
of G, if for every permutation r E G, either Yr = Y or Yr fl Y = 0. 
Primitive group. G is primitive if it possess no domain of imprimitivity. 

Lemma 3.25 S(A) is primitive for all ti > 1. 

Proof: The case of ti C 2 is trivial. It is easy to verify that for ti > 3 S, (A.) is transitive. 
Suppose by contradiction there exists a subset Y C {i,.. . ,n}, IYI ~: 2, which is a domain 
of imprimitivity of S(A). Let x E {1,. . .,n}\Y, y,z E Y. We can simply choose the 
3-cycle r E S(A), r = (x,y,z). xr = y, yr = z, zr = x, so the assumption Yr = Y or 
YrflY= 0 does not hold. 	 I 

Lemma 3.26 Let {r} 1, ri E G, be generators of G. Let {M} 1 , M cx, U 1 M; = 

X, M1 fl M; = 0 for i 0 j, form a partition of X, such that Mr1 = Mk, 1 < I < 
1 < j < 1, for some 1 < k C 1. Then each M, IMa I ~! 2, is a domain of imprimitivity of 
G. 

Proof: Let M10 , 1 < jo S 1, IM;j ~! 2, be a subset of the partition. Let r0 E G be an 
arbitrary element. r0 = fl..1 r, rk = +1, is an arbitrary representation of r0 as a word 
in {r1 } U {ri'}. The proof is by induction on s. 
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If a = 1, then 7r0 = r', for some 1 < 2k0m. Thus M507r0 = M° or M 0iro fl M50 = 0. 
Assume for all d <s. By induction M 0(fl:' r) = M, for some 1 < t < 1. Thus 

M0ro = Ma0 	fl (fl7rr = 	Mir = M for some 1 <u < I. 

So M30r0 = M30 if it = jo or M 0ro fl M10 = 0 if u 54 j°. 	 I 
A simple use of the the two Lemmas allows us to derive a general restriction on com-

plements of a permutation. This simple restriction is nearly enough to determine all the 
complements of a transposition in S,. 

Lemma 3.27 Let ir E S(A), n > 3. Let Y c {1,. .. , n} be the subset of points moved by 
ir, JYJ = k, 1 < k < n. Let a € S(A) be a complement to r, such that (ir,a) = Sn(An), 
and let a = JIM 1 C1 be the cycle decomposition of a (including cycles of length 1). 

Then the following condition on a must hold: For any cycle of the decomposition C1, 
1 < i < rn, if Z1 is the subset of points moved by C1, then YflZ1 54 0 (this implies rn < k). 

Proof: The proof is simple. Assume there exists a cycle C10 , 1 < io < in, in the decompo-
sition such that Y fl Z 0 = 0. We denote M1 = Z10 , M2 = {1,. . . n} \ Z 0 . Thus, IM, I ~! 2 
or 1M21 > 2 (n > 3). Observe that M1r = M1 , M2 7r = M2, M1a = M1 , M2a = M2. By 
Lemma 3.26 this implies that either M1 or M2 are domains of imprimitivity of (7r, o,). But 
since (7r, o,) = S, (A,) and by Lemma 3.25 S(A) is primitive, we have a contradiction. I 

We now prove the main result of this section and explicitly list all the complements 
of a transposition. The previous result gives us an important limitation on the form of a 
complement of a transposition. Namely, such a complement can be composed of at most 
two disjoint cycles. Adding a few other restrictions we have the following result. 

Lemma 3.28 For any transposition 7r  S,, n > 3, ir = (ai ,a2), a E 5,, is a complement 
to ir, such that (ir, a) = 5,, if a has one of the following forms (cycles of length one are 
omitted): 
The 1-cycle cases 

I. a is a (n - 1)-cycle that fixes one of the points {ai ,a2}. 

2. a is a n-cycle with the following property: Let rn be the unique integer, 1 < in < n, 
such that {ai}am = {a2}. Then (m, n) = 1. 

The 2-cycle case 

3. a has a cycle decomposition a = C1 . C2, ICi l = m1, 1 < i < 2, in1 + in2 = n, 
(MI , M2) = 1 and C1 moves the point {a}. 

Proof: By Lemma 3.15 we can assume ir = (1, 2). 
Let a € 5,, have one of the above forms. 
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1. This case was proved in Lemma 3.8. 

2. Let rn be the unique integer, 1 < rn <it, such that {1}cm = {2}. As (in, it) = 1, atm is 
also a n-cycle. By rewriting the points {3,... , n} we can assume cm = (1,2,3,. . . , ii). 
Thus, by Lemma 3.7, S,-, = ((1,2),cm) < ((1,2),o'). 

3. By rewriting the points {3,.. .,n} we can assume a = (1,3,.. .,j)(2,j + 1,...,n) 
with (j - 1 it 

- j + 1) = 1. 	is is a (j - 1)-cycle, so by Lemma 3.8, 

Si = ((1,2),cn_i+1) :~ ((1,2),c). 

Also, 	is a (it 
- j + 1)-cycle so it clear the symmetric group over the points 

{1, 2,j + 1,... , it} is in ((1,2), a). As this implies all the transpositions (1, i), 2 < i < n, 
are in ((1,2),a), by Lemma 3.5, ((1,2),o') =S,. 

This conclude the first part of the proof. 

Next, we assume or E 5n is a complement to ir = (1,2), such that ((1,2),o') = S,. 
Let a = fl1 C1 be the cycle decomposition of a (cycles of length one are omitted). By 
Lemma 3.27, k < 2, otherwise there exists a domain of imprimitivity of ((1,2),o'). 

We now use case analysis: 

Ic = 1 and lCd <n —:a 
In this case there are only two possibilities: 

1. (1,2) and a both fix a point {j}, 3 < j 	it. This implies ((1,2),a) 54 S,. 

2. a fixes the points 11, 2). This implies {1,2} is a domain of imprimitivity for 
((1,2),a). 

We conclude this case is not possible. 

Ic = i and C11 = ii - i 
If the fixed point of a is not {1} or {2} it is easy to see ((1,2),a) 0 S,. Otherwise, 
a has the form (1) of the Lemma. 

Ic = i and C11 = 
Let in be the unique integer, 1 < in < it, such that {l}am = {2}. Assume by 
contradiction (in,it) 0 1. Let am = JJ1 D1 be the cycle decomposition of a. We 
denote by Mj the subset of the points moved by the cycle D3, 1 < < 1. Observe 
that I = (in,it) and 2 < IMl = it/i < it, 1 < j 	1. Obviously, M1(1,2) = Mj for 
all 1 <j < 1. Also, it is easy to see that for each j, 1 <j < 1, there exists an index 
r, 1 < r < 1, such that Mja = Mr. Thus, we have the conditions of Lemma 3.25 
and each Mj, 1 < j < 1 is a domain of imprimitivity of ((1,2),a). This contradicts 
((1,2),or) = S,. Thus (m, n) = 1 and or has the form (2). 
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= 2 and 1C11 + II <" 
In this case we know there is at least one point {j}, 1 < j :5 n, that c fixes. hi ~! 3, 
then ((1,2),c) fixes the point {j}, and so ((1,2),c) 7~ S,. If  !~ 2, then at least one 
of the cycles C1,C2 fixes the points 11, 21, say C1. Thus the subset of points moved 
by C1 is a domain of imprimitivity of ((1,2),o). This is a contradiction to S being 
primitive. We conclude this case is not possible. 

k = 2 and lCd + 1C21 = n 
If one of the cycles C1,C2 moves both points 11, 21, then it is easy to see the subset 
of points moved by the other cycle is a domain of impriniitivity of ((1, 2), c). Thus, 
we can assume c = (1,3,... ,j)(2,j + 1,...,n) for some 3 < 	n - 1. Assume 
g = (j - 1,rz — j + 1) 	1. Observe that for any two elements x,y of an arbitrary 
group, (x, y) = (x, x y). In this case ((1, 2), c) =((1, 2), (1,2). c) =((1, 2), c1), where 
ci = (1,j+1,...,n-1,n,2,3,...,j)isa cycle of length n. Observe {1}cr 1 = {2}. 
Because gj-1,gn--j+1,we have gIn. Thus (n — j+1,n)1. We see this case 
can be reduced to the case k = 1, IC, I = it with in = n — i + 1 as the unique 
integer such that {1 }cm = {2}. In this case S. ((1,2),al ) was not possible. Thus, 
S. = ((1,2),c) is not possible. We conclude (j - 1,n —j + 1) = 1 and so o, has the 
form (3) of the Lemma. 
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