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Mathematical Foundations of ML – Function Spaces II 

 

 

Def   Hilbert space H  : Complete metric vector space induced by an inner product , : H H →  .  

Properties of the inner product:  

i. symmetric , ,x y y x=  ,  

ii. linear 1 2 1 2, , ,x x y x y x y   + = +  ,  

iii. Positive definite , 0x x   , with , 0 0x x x=  =  .  

The natural norm  
1/2

: ,
H

x x x=  satisfies 

 

(i) Cauchy-Schwartz  

,
H H

x y x y  

(ii) Triangle inequality   

 

( )
22 2 2 2 2

2 , 2x y x x y y x x y y x y+ = + +  + + = +  

 

So an Hilbert space is a Banach space. 
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Sobolev spaces 

 

 

Multivariate derivatives: A partial derivative of order m  
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( )mC  :  

 

The space of all continuously differentiable functions of degree m  in the classical sense. 
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The semi-norm with the polynomials of degree m  as a null-space 
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Examples ( )mC  Then 
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Sobolev spaces ( )r

pW  , 1 p   :  

 

Def I  For 1 p   , completion in ( )pL   of ( )rC   with respect to the norm  
p

m

D f

 

 . One can also take 

closure of ( )0

rC  .  

 

Def II We define the space of test-functions ( )0

rC   - continuously differentiable with compact support in  . 

Let ( ) ( )1pf L L   . Now for d + , r = , :g D f=  is the distributional (generalized) derivative of 

f  if for all ( )0

rC    
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So, in this sense ( )1

pH W . 

 

The Sobolev norm and semi-norm. We require that the distributional derivatives exist as functions(!) and  
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Theorem 
r

pW  is a Banach space  
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Remarks  

(i) Sometimes one sees 
( ) ( ) ( )

:r r
p p pW L W

f f f
  

= + , since by the theorem the two definitions are 

equivalent. 

(ii) This is also true for ‘nice’ domains and the constants depend on the ‘smoothness’ of the 

boundary.   

 

 

 

Approximation using uniform piecewise constants (numerical integration) 

 

The B-Spline of order one (degree zero, smoothness -1) ( )   ( )1 0,1
N x x= 1 . 

Let  =  or  ,a b = . We approximate from the space  
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Theorem Let ( )1

pf W , 1 p   . Then 
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Proof First assume ( ) ( )1 1

pf C W . Let’s take the interval ( ), 1kh k h+   . Then, for p =   
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So select ( ):kc f kh=  and you get the theorem for p =  . For 1 p    we do something similar 
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Therefore, with ( ) ( ) ( )1
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We then use a density argument to go from ( ) ( )1 1

pC W  to ( )1

pW . 

 

 

Modulus of smoothness  

 

Def  The difference operator r

h . For dh  we define ( ) ( ) ( ),h f x f x h f x = + − . For general 1r   we 
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Remarks  

 

1. For n , we in fact modify to ( ) ( ), : , ,r r

h hf x f x =   , where ( ), , 0r

h f x  = , in the case

 ,x x rh+  . So for  ,a b = , ( ), 0r

h f x =  on  ,b rh b− , for any function.  
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Def  The modulus of smoothness of order r  of a function ( )pf L  , 0 p   , at the parameter 0t   

 

( ) ( )
( )

, : sup ,
p

r

r hp L
h t

f t f x




=  . 

 

For 1r =  the modulus of smoothness is called the modulus of continuity.  

 

Example of non continuous functions. Let  1,1 = − . ( )
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In general, we’ll get ( )
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Quick jump into the “future” (Generalized Lipschitz / Besov smoothness)… for 1/  , 1r = +   , 
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We then say that f has  (weak-type) smoothness. Observe that in this example  can be arbitrarily large as 

long as the integration takes place with   sufficiently small.  

 


