Mathematical Foundations of ML - Function Spaces II

Def Hilbert space H : Complete metric vector space induced by an inner product $\langle\rangle:, H \times H \rightarrow \mathbb{C}$.
Properties of the inner product:
i. symmetric $\langle x, y\rangle=\overline{\langle y, x\rangle}$,
ii. linear $\left\langle\alpha x_{1}+\beta x_{2}, y\right\rangle=\alpha\left\langle x_{1}, y\right\rangle+\beta\left\langle x_{2}, y\right\rangle$,
iii. Positive definite $\langle x, x\rangle \geq 0$, with $\langle x, x\rangle=0 \Leftrightarrow x=0$.

The natural norm $\|x\|_{H}:=\langle x, x\rangle^{1 / 2}$ satisfies
(i) Cauchy-Schwartz

$$
|\langle x, y\rangle| \leq\|x\|_{H}\|y\|_{H}
$$

(ii) Triangle inequality

$$
\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2} \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2}
$$

So an Hilbert space is a Banach space.

Examples

(i) $\quad l_{2}(\mathbb{Z})$

$$
\langle\alpha, \beta\rangle_{L_{2}}:=\sum_{i \in \mathbb{Z}} \alpha_{i} \bar{\beta}_{i},\|\alpha\|_{2}:=\left(\sum_{i \in \mathbb{Z}}\left|\alpha_{i}\right|^{2}\right)^{1 / 2}
$$

(ii) $L^{2}(\Omega)$

$$
\begin{aligned}
& f, g \text { measurable },\langle f, g\rangle:=C_{\Omega} \int_{\Omega} f(x) \overline{g(x)} d x \\
& \|f\|_{L_{2}(\Omega)}=\|f\|_{2}=\langle f, f\rangle^{1 / 2}=\left(C_{\Omega} \int_{\Omega}|f(x)| d x\right)^{1 / 2}
\end{aligned}
$$

For $\Omega=\mathbb{R}^{n}, C_{\Omega}=1$. For $\Omega=[-\pi, \pi]^{n}, C_{\Omega}=\frac{1}{(2 \pi)^{n}}$.

Sobolev spaces

Multivariate derivatives: A partial derivative of order m

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}, \quad D^{\alpha} f=\frac{\partial^{m} f}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}, \quad|\alpha|:=\sum_{i=1}^{n} \alpha_{i}=m .
$$

$C^{m}(\Omega):$

The space of all continuously differentiable functions of degree m in the classical sense.

$$
\|f\|_{C^{m}(\Omega)}:=\sum_{|\alpha| \leq m}\left\|D^{\alpha} f\right\|_{L_{\infty}(\Omega)},
$$

The semi-norm with the polynomials of degree m as a null-space

$$
|f|_{C^{m}(\Omega)}:=\sum_{|\alpha|=m}\left\|D^{\alpha} f\right\|_{\infty}
$$

Examples $C^{m}(\mathbb{R})$ Then $\|f\|_{C^{m}(\mathbb{R})}=\sum_{k=0}^{m}\left\|f^{(k)}\right\|_{\infty}$ is a norm $|f|_{C^{m}(\mathbb{R})}=\left\|f^{(m)}\right\|_{\infty}$ is a semi-norm with the polynomials as a null-space

Sobolev spaces $W_{p}^{r}(\Omega), 1 \leq p \leq \infty$:

Def I For $1 \leq p<\infty$, completion in $L_{p}(\Omega)$ of $C^{r}(\Omega)$ with respect to the norm $\sum_{|\alpha| \leq m}\left\|D^{\alpha} f\right\|_{p}$. One can also take closure of $C_{0}^{r}(\Omega)$.

Def II We define the space of test-functions $C_{0}^{r}(\Omega)$ - continuously differentiable with compact support in Ω. Let $f \in L_{p}(\Omega) \cap L_{1}(\Omega)$. Now for $\alpha \in \mathbb{Z}_{+}^{d},|\alpha|=r, g:=D^{\alpha} f$ is the distributional (generalized) derivative of f if for all $\phi \in C_{0}^{r}(\Omega)$

$$
\int_{\Omega} g \phi=(-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} \phi .
$$

Assignment: For $H(x):=\left\{\begin{array}{cc}x+1, & -1 \leq x<0, \\ 1-x, & 0 \leq x \leq 1, \\ 0, & \text { else. }\end{array}\right.$
prove that $H^{\prime}(x)=g(x)=\left\{\begin{array}{cc}1, & -1 \leq x<0, \\ -1, & 0 \leq x \leq 1, . \\ 0, & \text { else. }\end{array}\right.$

So, in this sense $H \in W_{p}^{1}(\mathbb{R})$.
The Sobolev norm and semi-norm. We require that the distributional derivatives exist as functions(!) and

$$
\|f\|_{W_{p}^{r}(\Omega)}:=\sum_{|\alpha| \leq r}\left\|D^{\alpha} f\right\|_{L_{p}(\Omega)}<\infty \quad|f|_{W_{p}^{r}(\Omega)}:=\sum_{|\alpha|=r}\left\|D^{\alpha} f\right\|_{L_{p}(\Omega)} .
$$

Theorem W_{p}^{r} is a Banach space

Theorem For $f \in W_{p}^{r}\left(\mathbb{R}^{n}\right)$ and $0 \leq j \leq r, \varepsilon>0$

$$
\begin{gathered}
|f|_{j, p} \leq c\left(\varepsilon|f|_{r, p}+\varepsilon^{-j /(r-j)}\|f\|_{p}\right), \\
\|f\|_{j, p} \leq c\left(\varepsilon\|f\|_{r, p}+\varepsilon^{-j /(r-j)}\|f\|_{p}\right), \\
\|f\|_{j, p} \leq c\|f\|_{r, p}^{j / r}\|f\|_{p}^{(r-j) / r}
\end{gathered}
$$

Remarks

(i) Sometimes one sees $\|f\|_{W_{p}^{r}(\Omega)}:=\|f\|_{L_{p}(\Omega)}+|f|_{W_{p}^{r}(\Omega)}$, since by the theorem the two definitions are equivalent.
(ii) This is also true for 'nice' domains and the constants depend on the 'smoothness' of the boundary.

Approximation using uniform piecewise constants (numerical integration)

The B-Spline of order one (degree zero, smoothness -1) $N_{1}(x)=\mathbf{1}_{[0,1]}(x)$.
Let $\Omega=\mathbb{R}$ or $\Omega=[a, b]$. We approximate from the space

$$
S\left(N_{1}\right)^{h}:=\left\{\sum_{k \in \mathbb{Z}} c_{k} N_{1}\left(h^{-1} x-k\right)\right\}=\left\{\sum_{k \in \mathbb{Z}} c_{k} \mathbf{1}_{[k h,(k+1) h]}(x)\right\} .
$$

Theorem Let $f \in W_{p}^{1}(\mathbb{R}), 1 \leq p \leq \infty$. Then

$$
E\left(f, S\left(N_{1}\right)^{h}\right)_{L_{p}(\mathbb{R})}:=\inf _{g \in S\left(N_{1}\right)^{h}}\|f-g\|_{L_{p}(\mathbb{R})} \leq h|f|_{W_{p}^{1}(\mathbb{R})} .
$$

Proof First assume $f \in C^{1}(\mathbb{R}) \cap W_{p}^{1}(\mathbb{R})$. Let's take the interval $[k h,(k+1) h]$. Then, for $p=\infty$

$$
|f(x)-f(k h)|=\left|\int_{k h}^{x} f^{\prime}(u) d u\right| \leq h \sup _{u}\left|f^{\prime}(u)\right| .
$$

So select $c_{k}:=f(k h)$ and you get the theorem for $p=\infty$. For $1<p<\infty$ we do something similar

$$
|f(x)-f(k h)|^{p} \leq\left(\int_{k h}^{(k+1) h}\left|f^{\prime}(u)\right| d u\right)^{p}
$$

Then

$$
\begin{array}{rlr}
\int_{k h}^{(k+1) h}|f(x)-f(k h)|^{p} d x & \leq h\left(\int_{k h}^{(k+1) h}\left|f^{\prime}(u)\right| d u\right)^{p} \\
& \leq h\left(\left\|f^{\prime}\right\|_{\left.L_{p}([k h,(k+1) h])\right)}\|1\|_{\left.L_{p},([k h,(k+1) h])\right)}\right)^{p} & 1+\frac{p}{p^{\prime}}=1+p\left(1-\frac{1}{p}\right) \\
& =h h^{p / p^{\prime}}\left\|f^{\prime}\right\|_{L_{p}([k h,(k+1) h])}^{p} \\
& =h^{p}\left\|f^{\prime}\right\|_{L_{p}([k h,(k+1) h])}^{p} .
\end{array}
$$

Therefore, with $g(x):=\sum_{k} f(k h) N_{1}\left(h^{-1} x-k\right)$, we get

$$
\|f-g\|_{p}^{p}=\int_{-\infty}^{\infty}|f(x)-g(x)|^{p} d x=\sum_{k} \int_{k h}^{(k+1) h}|f(x)-f(k h)|^{p} d x \leq \sum_{k} h^{p}\left\|f^{\prime}\right\|_{L_{p}([k h,(k+1) h])}^{p}=h^{p}\left\|f^{\prime}\right\|_{p}^{p} .
$$

We then use a density argument to go from $C^{1}(\mathbb{R}) \cap W_{p}^{1}(\mathbb{R})$ to $W_{p}^{1}(\mathbb{R})$.

Modulus of smoothness

Def The difference operator Δ_{h}^{r}. For $h \in \mathbb{R}^{d}$ we define $\Delta_{h}(f, x)=f(x+h)-f(x)$. For general $r \geq 1$ we define

$$
\Delta_{h}^{r}(f, x)=\underbrace{\Delta_{h} \circ \cdots \Delta_{h}}_{r}(f, x)=\sum_{k=0}^{r}\binom{r}{k}(-1)^{r-k} f(x+k h) .
$$

Remarks

1. For $\Omega \subset \mathbb{R}^{n}$, we in fact modify to $\Delta_{h}^{r}(f, x):=\Delta_{h}^{r}(f, x, \Omega)$, where $\Delta_{h}^{r}(f, x, \Omega)=0$, in the case $[x, x+r h] \not \subset \Omega$. So for $\Omega=[a, b], \Delta_{h}^{r}(f, x)=0$ on $[b-r h, b]$, for any function.
2. As an operator on $L_{p}(\Omega), 1 \leq p \leq \infty$, we have that $\left\|\Delta_{h}^{r}\right\|_{L_{p} \rightarrow L_{p}} \leq 2^{r}$. Assume $\Omega=\mathbb{R}^{n}$, then

$$
\left\|\Delta_{h}^{r}(f, \bullet)\right\|_{p} \leq \sum_{k=0}^{r}\binom{r}{k}\|f(\cdot+k h)\|_{p}=\sum_{k=0}^{r}\binom{r}{k}\|f\|_{p}=2^{r}\|f\|_{p}
$$

Def The modulus of smoothness of order r of a function $f \in L_{p}(\Omega), 0<p \leq \infty$, at the parameter $t>0$

$$
\omega_{r}(f, t)_{p}:=\sup _{|h| \leq t}\left\|\Delta_{h}^{r}(f, x)\right\|_{L_{p}(\Omega)} .
$$

For $r=1$ the modulus of smoothness is called the modulus of continuity.
Example of non continuous functions. Let $\Omega=[-1,1] . f(x)=\left\{\begin{array}{ll}0 & x<0 \\ 1 & 0 \leq x\end{array}\right.$.
Let's compute $\omega_{r}(f, t)_{L_{p}([-1,1])}$.

$$
\Delta_{h}(f, x)=\left\{\begin{array}{cc}
0 & -1 \leq x \leq-h \\
1 & -h<x \leq 0 \\
0 & 0<x \leq 1
\end{array}\right.
$$

For $p=\infty$ we get $\omega_{1}(f, t)_{L_{\infty}([-1,1])}=1$.

For $p \neq \infty$ we get $\omega_{1}(f, t)_{L_{p}([-1,1])}=t^{1 / p}$.

$$
\Delta_{h}^{2}(f, x)=\Delta_{h}\left(\Delta_{h} f, x\right)=\left\{\begin{array}{cc}
0 & -1 \leq x \leq-2 h \\
1 & -2 h<x \leq-h \\
-1 & -h<x \leq 0 \\
0 & 0 \leq x \leq 1
\end{array}\right.
$$

We get $\omega_{2}(f, t)_{L_{p}([-1,1])}=(2 t)^{1 / p}$.
In general, we'll get $\omega_{r}(f, t)_{L_{p}([-1,1])} \leq C(r, p) t^{1 / p}$.
Quick jump into the "future" (Generalized Lipschitz / Besov smoothness)... for $\alpha<1 / \tau, r=\lfloor\alpha\rfloor+1$,

$$
|f|_{B_{t, \infty}^{\alpha}}:=\sup _{t>0} t^{-\alpha} \omega_{r}(f, t)_{\tau} \leq \sup _{0<t \leq 2} t^{-\alpha} \omega_{r}(f, t)_{\tau} \leq c \sup \sup _{0<t \leq 2} t^{1 / \tau-\alpha}<\infty .
$$

We then say that f has α (weak-type) smoothness. Observe that in this example α can be arbitrarily large as long as the integration takes place with τ sufficiently small.

