Mathematical Foundations of ML – Function Spaces II

Def Hilbert space H: Complete metric vector space induced by an inner product $\langle , \rangle : H \times H \to \mathbb{C}$. Properties of the inner product:

- i. symmetric $\langle x, y \rangle = \overline{\langle y, x \rangle}$,
- ii. linear $\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle$,
- iii. Positive definite $\langle x, x \rangle \ge 0$, with $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

The natural norm $||x||_{H} := \langle x, x \rangle^{1/2}$ satisfies

(i) Cauchy-Schwartz

$$\left|\left\langle x, y\right\rangle\right| \le \left\|x\right\|_{H} \left\|y\right\|_{H}$$

(ii) Triangle inequality

$$\|x + y\|^{2} = \|x\|^{2} + 2\langle x, y \rangle + \|y\|^{2} \le \|x\|^{2} + 2\|x\|\|y\| + \|y\|^{2} = (\|x\| + \|y\|)^{2}$$

So an Hilbert space is a Banach space.

Examples

(i)
$$l_2(\mathbb{Z})$$

 $\langle \alpha, \beta \rangle_{l_2} \coloneqq \sum_{i \in \mathbb{Z}} \alpha_i \overline{\beta}_i , \|\alpha\|_2 \coloneqq \left(\sum_{i \in \mathbb{Z}} |\alpha_i|^2\right)^{1/2}.$
(ii) $L^2(\Omega)$

$$f,g \text{ measurable}, \langle f,g \rangle \coloneqq C_{\Omega} \int_{\Omega} f(x) \overline{g(x)} dx,$$
$$\|f\|_{L_{2}(\Omega)} = \|f\|_{2} = \langle f,f \rangle^{1/2} = \left(C_{\Omega} \int_{\Omega} |f(x)| dx\right)^{1/2}.$$

For
$$\Omega = \mathbb{R}^n, C_\Omega = 1$$
. For $\Omega = \left[-\pi, \pi\right]^n, C_\Omega = \frac{1}{\left(2\pi\right)^n}$.

Sobolev spaces

Multivariate derivatives: A partial derivative of order m

$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n, \quad D^{\alpha} f = \frac{\partial^m f}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}, \quad |\alpha| \coloneqq \sum_{i=1}^n \alpha_i = m.$$

 $C^{m}(\Omega)$:

The space of all continuously differentiable functions of degree m in the classical sense.

$$\left\|f\right\|_{\mathcal{C}^{m}(\Omega)}\coloneqq\sum_{|\alpha|\leq m}\left\|D^{\alpha}f\right\|_{L_{\infty}(\Omega)},$$

The *semi-norm* with the polynomials of degree *m* as a *null-space*

$$\left|f\right|_{C^{m}(\Omega)} \coloneqq \sum_{|\alpha|=m} \left\|D^{\alpha}f\right\|_{\alpha}$$

Examples $C^m(\mathbb{R})$ Then $||f||_{C^m(\mathbb{R})} = \sum_{k=0}^m ||f^{(k)}||_{\infty}$ is a norm $|f|_{C^m(\mathbb{R})} = ||f^{(m)}||_{\infty}$ is a semi-norm with the polynomials as a null-space

<u>Sobolev spaces</u> $W_p^r(\Omega)$, $1 \le p \le \infty$:

Def I For $1 \le p < \infty$, completion in $L_p(\Omega)$ of $C^r(\Omega)$ with respect to the norm $\sum_{|\alpha| \le m} \|D^{\alpha} f\|_p$. One can also take closure of $C_0^r(\Omega)$.

Def II We define the space of *test-functions* $C_0^r(\Omega)$ - continuously differentiable with compact support in Ω . Let $f \in L_p(\Omega) \cap L_1(\Omega)$. Now for $\alpha \in \mathbb{Z}_+^d$, $|\alpha| = r$, $g \coloneqq D^{\alpha} f$ is the *distributional (generalized) derivative* of f if for all $\phi \in C_0^r(\Omega)$

$$\int_{\Omega} g\phi = (-1)^{|\alpha|} \int_{\Omega} fD^{\alpha}\phi$$

So, in this sense $H \in W_p^1(\mathbb{R})$.

The Sobolev norm and semi-norm. We require that the distributional derivatives exist as functions(!) and

$$\left\|f\right\|_{W_{p}^{r}(\Omega)} \coloneqq \sum_{|\alpha| \leq r} \left\|D^{\alpha}f\right\|_{L_{p}(\Omega)} < \infty \qquad \qquad \left|f\right|_{W_{p}^{r}(\Omega)} \coloneqq \sum_{|\alpha| = r} \left\|D^{\alpha}f\right\|_{L_{p}(\Omega)}.$$

Theorem W_p^r is a Banach space

Theorem For $f \in W_p^r(\mathbb{R}^n)$ and $0 \le j \le r$, $\varepsilon > 0$

$$\begin{split} \left\|f\right\|_{j,p} &\leq c\left(\varepsilon\left\|f\right\|_{r,p} + \varepsilon^{-j/(r-j)} \left\|f\right\|_{p}\right),\\ \left\|f\right\|_{j,p} &\leq c\left(\varepsilon\left\|f\right\|_{r,p} + \varepsilon^{-j/(r-j)} \left\|f\right\|_{p}\right),\\ \left\|f\right\|_{j,p} &\leq c \left\|f\right\|_{r,p}^{j/r} \left\|f\right\|_{p}^{(r-j)/r} \end{split}$$

Remarks

- (i) Sometimes one sees $||f||_{W_p^r(\Omega)} := ||f||_{L_p(\Omega)} + |f|_{W_p^r(\Omega)}$, since by the theorem the two definitions are equivalent.
- (ii) This is also true for 'nice' domains and the constants depend on the 'smoothness' of the boundary.

Approximation using uniform piecewise constants (numerical integration)

The B-Spline of order one (degree zero, smoothness -1) $N_1(x) = \mathbf{1}_{[0,1]}(x)$. Let $\Omega = \mathbb{R}$ or $\Omega = [a,b]$. We approximate from the space

$$S(N_1)^h := \left\{ \sum_{k \in \mathbb{Z}} c_k N_1(h^{-1}x - k) \right\} = \left\{ \sum_{k \in \mathbb{Z}} c_k \mathbf{1}_{[kh, (k+1)h]}(x) \right\}.$$

Theorem Let $f \in W_p^1(\mathbb{R})$, $1 \le p \le \infty$. Then

$$E\left(f,S\left(N_{1}\right)^{h}\right)_{L_{p}(\mathbb{R})} \coloneqq \inf_{g \in S\left(N_{1}\right)^{h}} \left\|f-g\right\|_{L_{p}(\mathbb{R})} \leq h\left|f\right|_{W_{p}^{1}(\mathbb{R})}.$$

Proof First assume $f \in C^1(\mathbb{R}) \cap W_p^1(\mathbb{R})$. Let's take the interval [kh, (k+1)h]. Then, for $p = \infty$

$$\left|f(x)-f(kh)\right| = \left|\int_{kh}^{x} f'(u) du\right| \le h \sup_{u} \left|f'(u)\right|.$$

So select $c_k := f(kh)$ and you get the theorem for $p = \infty$. For 1 we do something similar

$$\left|f(x)-f(kh)\right|^{p} \leq \left(\int_{kh}^{(k+1)h} \left|f'(u)\right| du\right)^{p}.$$

Then

$$\begin{split} \int_{kh}^{(k+1)h} \left| f(x) - f(kh) \right|^{p} dx &\leq h \left(\int_{kh}^{(k+1)h} \left| f'(u) \right| du \right)^{p} \\ &\leq h \left(\left\| f' \right\|_{L_{p}(\left[kh, (k+1)h \right])} \left\| 1 \right\|_{L_{p'}(\left[kh, (k+1)h \right])} \right)^{p} \qquad 1 + \frac{p}{p'} = 1 + p \left(1 - \frac{1}{p} \right) \\ &= h h^{p'p'} \left\| f' \right\|_{L_{p}(\left[kh, (k+1)h \right])}^{p} \qquad = 1 + p - 1 = p \\ &= h^{p} \left\| f' \right\|_{L_{p}(\left[kh, (k+1)h \right])}^{p} . \end{split}$$

Therefore, with $g(x) := \sum_{k} f(kh) N_1(h^{-1}x - k)$, we get

$$\|f - g\|_{p}^{p} = \int_{-\infty}^{\infty} |f(x) - g(x)|^{p} dx = \sum_{k} \int_{kh}^{(k+1)h} |f(x) - f(kh)|^{p} dx \le \sum_{k} h^{p} \|f'\|_{L_{p}([kh,(k+1)h])}^{p} = h^{p} \|f'\|_{p}^{p}.$$

We then use a density argument to go from $C^1(\mathbb{R}) \cap W_p^1(\mathbb{R})$ to $W_p^1(\mathbb{R})$.

Modulus of smoothness

Def The *difference operator* Δ_h^r . For $h \in \mathbb{R}^d$ we define $\Delta_h(f, x) = f(x+h) - f(x)$. For general $r \ge 1$ we define

$$\Delta_h^r(f,x) = \underbrace{\Delta_h \circ \cdots \Delta_h}_r(f,x) = \sum_{k=0}^r \binom{r}{k} (-1)^{r-k} f(x+kh).$$

Remarks

- 1. For $\Omega \subset \mathbb{R}^n$, we in fact modify to $\Delta_h^r(f, x) \coloneqq \Delta_h^r(f, x, \Omega)$, where $\Delta_h^r(f, x, \Omega) = 0$, in the case $[x, x+rh] \not\subset \Omega$. So for $\Omega = [a,b]$, $\Delta_h^r(f, x) = 0$ on [b-rh,b], for any function.
- 2. As an operator on $L_p(\Omega)$, $1 \le p \le \infty$, we have that $\left\|\Delta_h^r\right\|_{L_p \to L_p} \le 2^r$. Assume $\Omega = \mathbb{R}^n$, then

$$\left\|\Delta_{h}^{r}\left(f,\bullet\right)\right\|_{p} \leq \sum_{k=0}^{r} \binom{r}{k} \left\|f\left(\bullet+kh\right)\right\|_{p} = \sum_{k=0}^{r} \binom{r}{k} \left\|f\right\|_{p} = 2^{r} \left\|f\right\|_{p}$$

Def The *modulus of smoothness* of order r of a function $f \in L_p(\Omega)$, 0 , at the parameter <math>t > 0

$$\omega_r(f,t)_p \coloneqq \sup_{|h| \leq t} \left\| \Delta_h^r(f,x) \right\|_{L_p(\Omega)}.$$

For r = 1 the modulus of smoothness is called the *modulus of continuity*.

Example of non continuous functions. Let $\Omega = \begin{bmatrix} -1, 1 \end{bmatrix}$. $f(x) = \begin{cases} 0 & x < 0 \\ 1 & 0 \le x \end{cases}$.

Let's compute $\omega_r(f,t)_{L_p([-1,1])}$.

$$\Delta_h(f, x) = \begin{cases} 0 & -1 \le x \le -h \\ 1 & -h < x \le 0 \\ 0 & 0 < x \le 1 \end{cases}$$

For $p = \infty$ we get $\omega_1(f, t)_{L_{\infty}([-1,1])} = 1$.

For $p \neq \infty$ we get $\omega_1(f,t)_{L_p([-1,1])} = t^{1/p}$.

$$\Delta_{h}^{2}(f,x) = \Delta_{h}(\Delta_{h}f,x) = \begin{cases} 0 & -1 \le x \le -2h \\ 1 & -2h < x \le -h \\ -1 & -h < x \le 0 \\ 0 & 0 \le x \le 1 \end{cases}$$

We get $\omega_2(f,t)_{L_p([-1,1])} = (2t)^{1/p}$.

In general, we'll get $\omega_r(f,t)_{L_p([-1,1])} \leq C(r,p)t^{1/p}$.

Quick jump into the "future" (Generalized Lipschitz / Besov smoothness)... for $\alpha < 1/\tau$, $r = \lfloor \alpha \rfloor + 1$,

$$\left|f\right|_{B^{\alpha}_{r,\infty}} \coloneqq \sup_{t>0} t^{-\alpha} \omega_r \left(f,t\right)_{\tau} \leq \sup_{0 < t \le 2} t^{-\alpha} \omega_r \left(f,t\right)_{\tau} \leq c \sup_{0 < t \le 2} t^{1/\tau-\alpha} < \infty.$$

We then say that f has α (weak-type) smoothness. Observe that in this example α can be arbitrarily large as long as the integration takes place with τ sufficiently small.