Mathematical foundations of Machine Learning 2024 – lesson 3

Shai Dekel

Support Vector Machines (SVM)

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Linear SVM for binary classification

We have a dataset $\{(x_i, y_i)\}_{i \in I}, x_i \in \mathbb{R}^n, y_i \in \{-1, 1\}$

Our model is a 'best' separating hyper-plane

$$\boldsymbol{\theta} \coloneqq \left\{ \boldsymbol{\beta} \in \mathbb{R}^n, \ \left\| \boldsymbol{\beta} \right\|_{l_2(\mathbb{R}^n)} = 1, \ \boldsymbol{\beta}_0 \in \mathbb{R} \right\}, \ \mathbf{P} \coloneqq \left\{ \boldsymbol{x} \in \mathbb{R}^n : \sum_{k=1}^n \boldsymbol{\beta}_k \boldsymbol{x}_k + \boldsymbol{\beta}_0 = \mathbf{0} \right\}$$

Once found, the inference of a new feature vector $x = (x_1, ..., x_n)$ is

$$\operatorname{sgn}\left(\sum_{k=1}^{n}\beta_{k}x_{k}+\beta_{0}\right), \quad \operatorname{dist}(x,P)=\left|\sum_{k=1}^{n}\beta_{k}x_{k}+\beta_{0}\right|$$

Linear SVM – separable case 'Best' separating hyper-plane – largest margin on training set s.t. $y_i(\langle x_i, \beta \rangle + \beta_0) \ge M, \quad \forall i \in I_{\text{train}}$ max M \Leftrightarrow $|\beta|=1$ s.t. $y_i \left(\left\langle x_i, \frac{\beta}{M} \right\rangle + \frac{\beta_0}{M} \right) \ge 1, \quad \forall i \in I_{\text{train}} \quad \underset{\tilde{\beta} = \beta/M, \tilde{\beta}_0 = \beta_0/M}{\Leftrightarrow}$ $\max M$ $||\beta||=1$ s.t. $y_i(\langle x_i, \tilde{\beta} \rangle + \tilde{\beta}_0) \ge 1, \quad \forall i \in I_{\text{train}}$ $\min_{\tilde{\beta},\tilde{\beta}_{c}} \|\tilde{\beta}\|$ $x^T \beta + \beta_0 = 0$ $\min_{\tilde{\beta} \in \tilde{\beta}_0} \| \tilde{\beta} \|^2 \quad \text{s.t.} \quad y_i \Big(\langle x_i, \tilde{\beta} \rangle + \tilde{\beta}_0 \Big) \ge 1, \quad \forall i \in I_{\text{train}}.$

margin

$$\max_{\theta, \|\beta\|=1} M, \quad \text{subject to } y_i (\langle \beta, x_i \rangle + \beta_0) \ge M, \ \forall i \in I_{\text{train}}.$$

Equivalent formulation

$$\min_{\theta} \|\beta\|, \quad \text{subject to } y_i(\langle\beta, x_i\rangle + \beta_0) \ge 1, \ \forall i \in I_{\text{train}}.$$

We may then normalize $\,\beta\,$ for inference

Minimizing $\|\beta\|^2$ gives a convex optimization problem: quadratic criterion, linear constraints

What if a separating hyper-plane does not exist? We add slack variables $\min \frac{1}{2} \|\beta\|^2 + C \sum \xi_i$,

$$\sum_{i \in I_{\text{train}}} 2^{\|\mathcal{P}\|} \sum_{i \in I_{\text{train}}} z_i,$$

subject to $y_i(\langle \beta, x_i \rangle + \beta_0) \ge 1 - \xi_i, \ \xi_i \ge 0, \forall i \in I_{\text{train}}$

C serves as a 'weight' term. $C = \infty$: separable case. $x^T \beta + \beta_0 = 0$ ξ_1^* ξ_2^* $M = \frac{1}{||\beta||}$ $M = \frac{1}{||\beta||}$

The Lagrange (primal) function is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N \alpha_i [y_i (x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^N \mu_i \xi_i, \quad (12.9)$$

which we minimize w.r.t β , β_0 and ξ_i . Setting the respective derivatives to zero, we get

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i, \qquad (12.10)$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i, \qquad (12.11)$$

$$\alpha_i = C - \mu_i, \forall i, \qquad (12.12)$$

The Lagrange (primal) function is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N \alpha_i [y_i (x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^N \mu_i \xi_i, \quad (12.9)$$

which we minimize w.r.t β , β_0 and ξ_i . Setting the respective derivatives to zero, we get

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i, \qquad (12.10)$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i, \qquad (12.11)$$

$$\alpha_i = C - \mu_i, \forall i, \qquad (12.12)$$

as well as the positivity constraints α_i , μ_i , $\xi_i \geq 0 \quad \forall i$. By substituting (12.10)–(12.12) into (12.9), we obtain the Lagrangian (Wolfe) dual objective function

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'}, \qquad (12.13)$$

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'}, \qquad (12.13)$$

which gives a lower bound on the objective function (12.8) for any feasible point. We maximize L_D subject to $0 \le \alpha_i \le C$ and $\sum_{i=1}^N \alpha_i y_i = 0$. In

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^N \xi_i$$
subject to $\xi_i \ge 0, \ y_i (x_i^T \beta + \beta_0) \ge 1 - \xi_i \ \forall i,$

$$(12.8)$$

C=0.01

from sklearn.svm import LinearSVC
linSVM = LinearSVC()
linSVM.fit(X_train,Y_train)

C:\Users\user\anaconda3\Lib\site-pack
om `True` to `'auto'` in 1.5. Set the
warnings.warn(

LinearSVC
 LinearSVC()

The idea is to transform the features using a nonlinear transformation to a higher-dimensional space and find a separating hyper-plane there.

$$h: \mathbb{R}^{n} \to \mathbb{R}^{M}, \ h(x) = (h_{1}(x), \dots, h_{M}(x))$$

The hyper-plane in defined by $\hat{\theta} := \{\hat{\beta} \in \mathbb{R}^{M}, \hat{\beta}_{0} \in \mathbb{R}\}$
$$\langle h(x), \hat{\beta} \rangle + \hat{\beta}_{0} = 0$$

Inference is by

$$\operatorname{sgn}(\langle h(x), \hat{\beta} \rangle + \hat{\beta}_0)$$

- We can represent the problem in a special way, replacing the explicit mapping h by a kernel.
- First observe that the dual maximization is determined by dotproducts of the mappings

$$L_{D} = \sum_{i \in I_{\text{train}}} \hat{\alpha}_{i} - \frac{1}{2} \sum_{i \in I_{\text{train}}} \sum_{i \in I_{\text{train}}} \hat{\alpha}_{i} \hat{\alpha}_{j} y_{i} y_{j} \left\langle h(x_{i}), h(x_{j}) \right\rangle$$
(12.19)

- Using (12.10)

$$\left\langle h(x), \hat{\beta} \right\rangle + \hat{\beta}_0 = \sum_{i \in I_{\text{train}}} \hat{\alpha}_i y_i \left\langle h(x), h(x_i) \right\rangle + \hat{\beta}_0 \tag{12.20}$$

So both (12.19) and (12.20) involve h(x) only through inner products. In fact, we need not specify the transformation h(x) at all, but require only knowledge of the kernel function

$$K(x, x') = \langle h(x), h(x') \rangle \tag{12.21}$$

that computes inner products in the transformed space. K should be a symmetric positive (semi-) definite function; see Section 5.8.1. Three popular choices for K in the SVM literature are

dth-Degree polynomial: $K(x, x') = (1 + \langle x, x' \rangle)^d$, Radial basis: $K(x, x') = \exp(-\gamma ||x - x'||^2)$, (12.22) Neural network: $K(x, x') = \tanh(\kappa_1 \langle x, x' \rangle + \kappa_2)$.

kernel SVM...is feature engineering?

Consider for example a feature space with two inputs X_1 and X_2 , and a polynomial kernel of degree 2. Then

$$K(X, X') = (1 + \langle X, X' \rangle)^{2}$$

= $(1 + X_{1}X'_{1} + X_{2}X'_{2})^{2}$
= $1 + 2X_{1}X'_{1} + 2X_{2}X'_{2} + (X_{1}X'_{1})^{2} + (X_{2}X'_{2})^{2} + 2X_{1}X'_{1}X_{2}X'_{2}.$
(12.23)

Then M = 6, and if we choose $h_1(X) = 1$, $h_2(X) = \sqrt{2}X_1$, $h_3(X) = \sqrt{2}X_2$, $h_4(X) = X_1^2$, $h_5(X) = X_2^2$, and $h_6(X) = \sqrt{2}X_1X_2$, then $K(X, X') = \langle h(X), h(X') \rangle$. From (12.20) we see that the solution can be written

$$\hat{f}(x) = \sum_{i=1}^{N} \hat{\alpha}_i y_i K(x, x_i) + \hat{\beta}_0.$$
(12.24)

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

: from sklearn import svm
kernelSVM = svm.SVC(kernel='rbf')
kernelSVM.fit(X_train,Y_train)

