Mathematical foundations of Machine Learning 2024 – lesson 5

Shai Dekel

Gradient boosting

AdaBoost – binary classification case

We have a dataset $\{(x_i, y_i)\}_{i \in I}, x_i \in \mathbb{R}^n, y_i \in \{-1, 1\}$

Boosting: sequentially, at the m-th iteration, apply a "weak classifier" (e.g. logistic regression, SVM) G_m on weighted versions of the training set (or subset). For example:

Weighted NLL loss
$$-\frac{1}{\sum_{i \in I} w_i} \left\{ \sum_{y_i=1} w_i \log h_{\theta_m} \left(x_i \right) + \sum_{y_i=-1} w_i \log \left(1 - h_{\theta_m} \left(x_i \right) \right) \right\}$$

$$h_{\theta_m}(x) := \frac{1}{1 + e^{-\left(\left\langle \vec{\beta}_m, x \right\rangle + \beta_{0,m}\right)}} \qquad G_m(x) = \operatorname{sgn}\left(2h_{\theta_m}(x) - 1\right)$$

Create an aggregated "strong classifier" $G(x) = \sum_{m=1}^{M} \alpha_m G_m(x)$

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}. \quad \operatorname{err}_{m} < 0.5 \Rightarrow \frac{1 - \operatorname{err}_{m}}{\operatorname{err}_{m}} > 1$$

$$\operatorname{err}_{m} < 0.5 \Rightarrow \frac{1 - \operatorname{err}_{m}}{\operatorname{err}_{m}} > 1$$

 $\Rightarrow \alpha_m > 0$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

sklearn.ensemble.AdaBoostClassifier

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None) [source]

An AdaBoost classifier.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

Read more in the User Guide.

New in version 0.14.

Parameters:

base_estimator : object, default=None

The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper classes_ and n_classes_ attributes. If None, then the base estimator is DecisionTreeClassifier initialized with max_depth=1.

n_estimators: int, default=50

The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early.

learning_rate : float, default=1.0

Weight applied to each classifier at each boosting iteration. A higher learning rate increases the contribution of each classifier. There is a trade-off between the learning_rate and n_estimators parameters.

AdaBoost-SAMME (multi-class case)

Algorithm 2. SAMME

- 1. Initialize the observation weights $w_i = 1/n$, i = 1, 2, ..., n.
- 2. For m = 1 to M:
 - (a) Fit a classifier $T^{(m)}(\mathbf{x})$ to the training data using weights w_i .
 - (b) Compute

$$err^{(m)} = \sum_{i=1}^{n} w_i \mathbb{I}\left(c_i \neq T^{(m)}(\boldsymbol{x}_i)\right) / \sum_{i=1}^{n} w_i.$$

(c) Compute

(1)
$$\alpha^{(m)} = \log \frac{1 - err^{(m)}}{err^{(m)}} + \log(K - 1).$$

(d) Set

$$w_i \leftarrow w_i \cdot \exp\left(\alpha^{(m)} \cdot \mathbb{I}\left(c_i \neq T^{(m)}(\boldsymbol{x}_i)\right)\right),$$

for
$$i = 1, ..., n$$
.

- (e) Re-normalize w_i .
- 3. Output

$$C(\boldsymbol{x}) = \arg\max_{k} \sum_{m=1}^{M} \alpha^{(m)} \cdot \mathbb{I}(T^{(m)}(\boldsymbol{x}) = k).$$

Note that Algorithm 2 (SAMME) shares the same simple modular structure of AdaBoost with a *simple but subtle* difference in (1), specifically, the extra term $\log(K-1)$. Obviously, when K=2, SAMME reduces to AdaBoost. However, the term $\log(K-1)$ in (1) is critical in the multi-class case (K>2). One immediate consequence is that now in order

Multi-class AdaBoost 351

^{*}J. Zhu, H. Zou and S. Saharon, Multi-class Adaboost, statistics and its interface 2 (2009), 349-360.

xgboost.readthedocs.io/en/stable/index.html

XGBoost

TABLE OF CONTENTS

Installation Guide

Building From Source

Get Started with XGBoost

XGBoost Tutorials

Frequently Asked Questions

XGBoost User Forum

GPU Support

XGBoost Parameters

Prediction

XGBoost Tree Methods

Python Package

R Package

JVM Package

Ruby Package

Swift Package

Julia Package

C Package

C++ Interface

CLI Interface

Contribute to XGBoost

Docs / XGBoost Documentation

XGBoost Documentation

XGBoost is an optimized distributed gradient boosting library designed to be highly **efficient**, **flexible** and **portable**. It implements machine learning algorithms under the <u>Gradient Boosting</u> framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

Contents

- Installation Guide
- Building From Source
- Get Started with XGBoost
- XGBoost Tutorials
 - Introduction to Boosted Trees
 - Introduction to Model IO
 - Distributed XGBoost with AWS YARN
 - Distributed XGBoost on Kubernetes
 - Distributed XGBoost with XGBoost4J-Spark
 - Distributed XGBoost with Dask
 - Distributed XGBoost with Ray
 - DART booster
 - Monotonic Constraints
 - Random Forests(TM) in XGBoost
 - A FOR THE RESERVE AND A SECOND ASSESSMENT

Objective Function: Training Loss + Regularization

With judicious choices for y_i , we may express a variety of tasks, such as regression, classification, and ranking. The task of **training** the model amounts to finding the best parameters θ that best fit the training data x_i and labels y_i . In order to train the model, we need to define the **objective** function to measure how well the model fit the training data.

A salient characteristic of objective functions is that they consist of two parts: **training loss** and **regularization term**:

$$obj(\theta) = L(\theta) + \Omega(\theta)$$

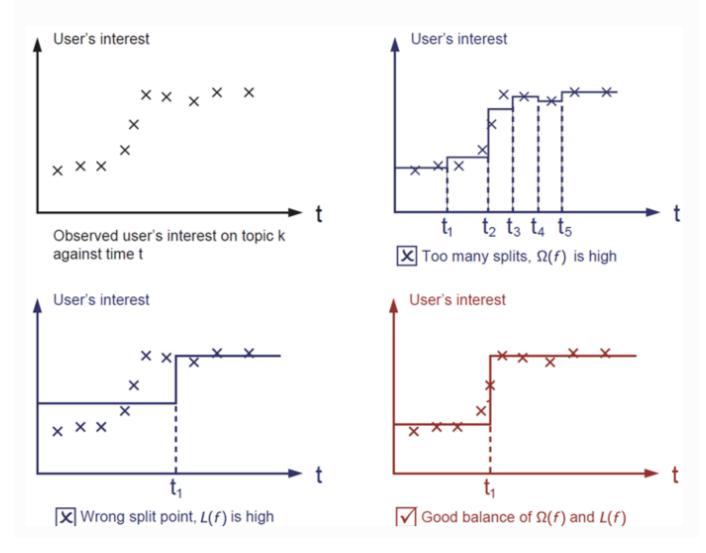
where L is the training loss function, and Ω is the regularization term. The training loss measures how predictive our model is with respect to the training data. A common choice of L is the mean squared error, which is given by

$$L(heta) = \sum_i (y_i - \hat{y}_i)^2$$

Another commonly used loss function is logistic loss, to be used for logistic regression:

$$L(heta) = \sum_i [y_i \ln(1 + e^{-\hat{y}_i}) + (1 - y_i) \ln(1 + e^{\hat{y}_i})]$$

The **regularization term** is what people usually forget to add. The regularization term controls the complexity of the model, which helps us to avoid overfitting. This sounds a bit abstract, so let us consider the following problem in the following picture. You are asked to *fit* visually a step function given the input data points on the upper left corner of the image. Which solution among the three do you think is the best fit?



Wavelet-based gradient boosting

We again cover the case of regression & classification with the same model / approach

$$\{(x_i, \vec{y}_i)\}_{i \in I}, x_i \in \mathbb{R}^n, \vec{y}_i \in \mathbb{R}^L, |I_{\text{train}}| = N, \text{Loss} = \frac{1}{N} \sum_{i \in I_{\text{train}}} \|\tilde{f}(x_i) - \vec{y}_i\|_{l_2(\mathbb{R}^L)}^2$$

We construct a sequence of pruned trees, each considered a "weak learner" (e.g. XGBoost). One simpler version of this is to construct trees with limited depth.

At each iteration, current model = weighted voting of the trees.

At each iteration, we 'boost' the samples which the current model has the largest error on

One may initialize the model with $\hat{f}_0(x) = \frac{1}{N} \sum_{i=1}^N \vec{y}_i$, $\vec{y}_i^{(0)} = \vec{y}_i$, $i \in I_{\text{train}}$.

Wavelet-based gradient boosting

For
$$k = 1, ..., K$$

(a) Update residuals
$$\vec{y}_i^{(k)} = \vec{y}_i - \hat{f}_{k-1}(x_i), i \in I_{\text{train}}.$$

- (b) Choose random validation set (OOB=Out Of Bag) $J_{\scriptscriptstyle k} \subset I_{
 m train}$
- (c) Construct a tree \mathcal{T}_k using $(x_i, \vec{y}_i^{(k)})$, $i \in I_{\text{train}} \setminus J_k$
- (d) Select best M for M-term wavelet approximation $\sum_{m=1}^{m} \psi_{\Omega_m}$, $\Omega_m \in \mathcal{T}_k$ of k-th validation set $(x_i, \vec{y}_i^{(k)})$, $i \in J_k$
- (e) Update the prediction model with learning rate $\nu > 0$

$$\hat{f}_k = \hat{f}_{k-1} + \nu \sum_{m=1}^M \psi_{\Omega_m}$$

Wavelet-based gradient boosting

Datasets details

Dataset	#Samples	#Features		
Banana	5299	2		
PID	768	8		
Heart	270	13		
TwoNorm	7400	20		

Comparison on datasets with mislabeling (% accuracy)

Dataset name	Noise Level	rAdaBoost	rBoost-Fixed γ	rBoost	GBoost	MBoost	WGB
Banana	0.1	86.87 ± 1.1	87.06 ± 0.9	87.04 ± 0.9	83.91 ± 1.6	78.13 ± 3.4	87.60 ± 1.6
	0.3	85.27 ± 3.0	85.53 ± 2.1	85.06 ± 2.7	79.38 ± 1.6	75.31 ± 2.5	85.49 ± 1.3
PID	0.1	74.20 ± 2.3	74.37 ± 1.5	74.80 ± 2.4	72.60 ± 2.0	75.67 ± 1.9	74.21 ± 6.2
	0.3	72.53 ± 1.9	70.43 ± 2.4	71.43 ± 2.3	69.40 ± 2.9	73.33 ± 2.3	75.65 ± 7.5
Heart	0.1	78.40 ± 3.1	79.70 ± 3.5	79.10 ± 4.4	76.40 ± 3.1	77.60 ± 3.5	80.74 ± 8.2
	0.3	78.50 ± 4.0	77.40 ± 6.5	78.10 ± 4.3	70.00 ± 5.5	75.20 ± 3.7	73.70 ± 11.5
TwoNorm	0.1	95.70 ± 0.8	95.58 ± 0.9	95.59 ± 0.7	90.35 ± 1.0	92.79 ± 0.5	96.40 ± 0.8
	0.3	93.33 ± 0.9	93.13 ± 1.3	93.40 ± 1.1	83.94 ± 2.0	91.16 ± 0.9	94.82 ± 0.7