
Sparsity-Probe:1

Analysis tool for Deep Learning Models ∗2

Ido Ben-Shaul† and Shai Dekel†3

4

Abstract. We propose a probe for the analysis of deep learning architectures that is based on machine learning and5
approximation theoretical principles. Given a deep learning architecture and a training set, during or after training,6
the Sparsity Probe allows to analyze the performance of intermediate layers by quantifying the geometrical7
features of representations of the training set. We show how the Sparsity Probe allows measure the contribution of8
adding depth to a given architecture, to detect under-performing layers, etc., all this without any auxiliary test data9
set.10

Key words. Deep Learning, Approximation Theory, Representation learning, Wavelets, Sparsity, Explainability.11

AMS subject classifications. 68T07, 68T30, 65D15, 65Y20, 65D40, 65D1012

1. Introduction. Deep Neural Networks(DNN) have triumphantly improved benchmarks in a13

variety of different tasks. Remarkable works of architecture design [33, ?, 51], optimization methods14

[45, 30, 14], and data mutation [27, 49, 9, 5] have been introduced and shown to empirically advance15

the fields of computer vision and natural language processing. Still, practitioners fail to justify the16

success of these models and lack the tools to test their real-world performance. Furthermore, while the17

basic notions of network architecture are understood [33, 19], it is difficult to assess the contribution of18

a certain layer of a trained model. Given these limitations, it is often unknown how to analyze a given19

architecture and how it can be improved. In many cases networks are treated as black boxes that lack20

explainability, and architectural experiments are conducted in a trial and error manner. An auxiliary test21

set is regularly presented as an approximation of the true dataset distribution [44, 32, 31] and used to22

quantify the model performance.23

Given the supervised classification setting, as presented in [6], any machine learning algorithm24

seeks to find a geometrical transformation that separates the samples of different categories and gathers25

the samples from matching categories. This notion has been prevalent in the field of Self-Supervised26

Learning(SSL) [21, 4, 55]. In this paradigm, lacking the categorical information, a distorted image is27

generally compared to itself, to enforce the geometrical notion.28

In the Deep Learning setting, the category labels are often represented as a one-hot-encoding [23],29

a vector in RL, where L is the number of categories. Intermediate Features have been shown to learn30

incrementally higher-level features throughout the model layers [18, 41]. The output of the model’s kth31

layer, as k grows, is expected to have a simpler structure, as the features contain more information that32

is class-specific. This concept corresponds to simpler mappings from incremental layers to the output33

labels.34

In the approximation theory approach, the sparsity of a function given some representation can35

be a robust method for evaluating its simplicity [15, 16]. Functions in Deep Learning are generally36

not of a Sobolev nature, but rather in a general Besov Space [43]. The study of adaptive, nonlinear37

approximation[12], allows the computation of this complexity score on such inherently non-smooth38

∗Received by the editors DATE.
†Department of Applied Mathematics, Tel-Aviv University(idobenshaul@mail.tau.ac.il, shai@tauex.tau.ac.il).

1

This manuscript is for review purposes only.

mailto:idobenshaul@mail.tau.ac.il
mailto:shai@tauex.tau.ac.il

2 I. BEN-SHAUL, S. DEKEL

Figure 1: Demonstration of uncrumpling of the data representation through DL layers, as proposed in [6].

Figure 2: UMAP dimensionality reduction for the feature space of the input layer, the 2nd layer, and the 6th layer of a VGG-13 architecture
well-trained on the CIFAR10 dataset. The improved clustering of the data representations is visually significant.

functions.39

The main contributions of this paper are as follows:40

(i) Sparsity-Probe, a mathematically grounded tool for investigating the performance of interme-41

diate model layers is introduced, using solely the train data, and model architecture(without an42

auxiliary test set).43

(ii) Extensive analysis is conducted showing the advantage of the Sparsity-Probe over classical44

clustering indices.45

(iii) To support the theoretical basis, Sparsity-Probe is demonstrated on several known classification46

datasets.47

(iv) We present examples where the Sparsity-Probe is able to detect faulty or buggy architectures48

and by pinpointing the problematic layer allows to fix them.49

2. Related Research and Concepts.50

2.1. Statistical Approach. Different statistical and mathematical theories that aim to explain51

the success of DL have been proposed. The authors of [47] provide an Information-Bottleneck theory52

in which the network is viewed as a Markov-Chain. The Mutual-Information is documented between53

This manuscript is for review purposes only.

SPARSITY-PROBE 3

the inputs and the labels throughout the layers. Other statistical approaches [34] propose equivalence54

between increasingly-wide networks and Gaussian Processes.55

Classic Machine Learning algorithms rely heavily on the geometry of the input feature for their suc-56

cess. Methods like Support Vector Machines [8], KNN [37], and Random Forest [3] focus on leveraging57

the geometry of the data for training. DL models are required as automatic feature engineering tools,58

when there is no clear clustering of the classes in the original feature space (e.g. pixel representation in59

computer vision). This leads us to believe that without a clear understanding of the geometry in the60

hidden layers, one cannot hope to understand the prediction quality of the model.61

2.2. Approximation-Theoretical Approach. Approximation Theory has given great impor-62

tance in the field of Signal and Image Processing. Many methods have been offered for uncovering63

concealed relevant information from signals [43, 10, 15, 38]. There has been a large amount of interest64

in grounding the theoretical basis of Neural Networks from an approximation theoretical perspective.65

Many such works study the expressive power of deep feed-forward neural networks(FNN) for a certain66

target function f ∈ B networks, where B is a given Banach Space. In [46], the number of neurons is67

used to characterize the approximation rate for Hölder continuous functions using ReLU FNNs. Using68

both the width and depth of the network, [36] achieve optimal approximation characterization of deep69

ReLU networks for smooth functions. Upper and lower bounds for the capacity needed to approximate70

Sobolev Functions are demonstrated in [53]. The authors were able to show that deep ReLU networks71

are able to more efficiently approximate smooth functions than shallow networks. General continuous72

functions are considered in [54], where optimality is shown for constant-width fully connected in terms73

of approximation rates.74

However, typically the authors assume that the input dataset can be represented as samples of75

a continuous or smooth function, such as functions in certain Sobolev spaces with sufficiently high76

smoothness index. Yet, evidence suggests that in most computer vision problems the input space77

is more correctly modelled by a discontinuous function. UMAP [39] is a nonlinear dimensionality78

reduction method that is commonly used to visualize data. In 2 we visualize the feature space of79

the input layer, the 2nd layer, and the 6th layer of a VGG-13 architecture trained on the CIFAR1080

dataset. We sample 6000 random instances from the Train Set, and fit the UMAP reduction on their81

matching latent representation. It is obvious that the input space represents a discontinuous function. It82

is eyeopening to see that throughout the layers, the geometric clustering is apparent. Thus, in this work,83

we assume that the input dataset can be modeled as a function in some geometric Besov space, with84

relatively low smoothness index.85

2.3. Sparsity-Based Approach. Sparsity has been shown paramount for representing complex86

signals and giving insights into their nature e.g. Wavelet and Fourier transforms [38, 10, 15]. It is87

intuitive to believe that DNNs employ sparsity methods to achieve successful representation learning.88

The Multi-Layer Convolutional Sparse Coding(ML-CSC) [42] provides a sparsity-based apprehension89

of Convolutional Neural Networks. Given a Dictionary D, it is shown that a ReLU Network forward90

pass is in fact equivalent to a layer-wise Nonnegative Sparse Coding pursuit, using Soft Nonnegative91

layered thresholding as a sparsity pursuit approximation. In [50], a holistic pursuit is proposed along92

with a method for such Dictionary Learning. The discovery that concatenated layers are sparse with93

respect to a proposed dictionary is an important one and helps bridge the gap between the sparsity94

theory and empirically found neural network architectures. Our study differs from this approach in95

two critical aspects. The ML-CSC model proves that under certain conditions, a sparse Dictionary and96

This manuscript is for review purposes only.

4 I. BEN-SHAUL, S. DEKEL

representation vectors can be found, and propose methods for finding them. In our work, a general97

Post-hoc technique is shown to reliably enhance the explainability of any given trained model, along98

with its train dataset. This, in turn, does not involve learning a specific dictionary and representation,99

but rather assessing the quality of a given state. More importantly, we focus on supervised learning,100

where the sample categories(whether provided or not) are integral to approximate the model quality.101

Indeed, our premise relies on the fact that the sparsity should be centered around the mapping between102

the latent features and the labels. To strengthen this claim, consider a certain representation space.103

For a specific label assignment, this representation can be extremely well clustered, yet completely104

intertwined for a different label assignment.105

2.4. Linear and Kernel Probes.106

Definition 2.1 (Linear Separability). Two sets Ω1,Ω2 ⊂ Rn are linearly separable, if their107

convex hulls do not intersect.108

Definition 2.2 (Non-Linear Separability). We say the sets Ω1, . . .Ωk ⊂ Rn are non-linearly109

separable if for every Ωi there exists a domain Mi ⊂ Rn with a smooth boundary, such that Ωi ⊂Mi110

and Mi ∩
⋃
j 6=i

Mj = ∅.111

Classic machine learning algorithms like SVMs and CART[35] seek to find the best separation in112

the feature space between clusters of different classes. In the field of Representation Learning [2],113

contrastive losses [?, 29, 24] aim to separate samples of different underlying category, whilst clustering114

samples of the same category. It is then of interest to quantify the wellness of separability between115

classes in the latent space.116

Recent works propose to compute the linear separability of the intermediate layers [1, 7]. Linear117

Separability is simple to define and compute, yet fails to grasp any separation which is not linear.118

We present three synthetic toy datasets, with feature space of dimension 2, and two outcome classes:119

Spiral, Circles, and Gaussian Quantiles(GQ) - see figure 3. It is clear that the Linear Classifier methods120

cannot differentiate between the classes, as they are not linearly separable. A more sophisticated121

measure of separability is considered in [40], by using radial basis kernel PCA to map the latent space122

to a different representation (selecting d leading singular values), and measure linear separability in123

the projected dimension. This is problematic as d is difficult to choose. In fact, if d is large enough,124

linear separability becomes trivial, and so the authors consider small d. In general, one should prefer to125

measure the true separability in the given dimension, instead of measuring the linear separability in a126

projected (potentially lower-dimensional) space.127

The separability of feature space in an intermediate layer is equivalent to the smoothness of the128

mapping to the sample labels, in the one-hot-encoding scheme. This work relies on sparsity to measure129

the smoothness of such functions. In [6], a DNN is compared to an uncrumpling of a high dimensional130

paper ball, such that every layer decouples between the classes incrementally. This concept is visualized131

in 1. In this visualization, at the final layer, we show an example of data that are well separated,132

yet clearly not linearly separable. We propose the Sparsity-Probe as a tool to quantify this type of133

separation.134

3. Formulation.135

3.1. Preliminaries. Evaluating the sparsity of a high dimensional function can be a daunting136

task. We base our notion on a classic approach that arrives from Image Compression [13], where137

This manuscript is for review purposes only.

SPARSITY-PROBE 5

Figure 3: Three synthetic datasets which are all non-linearly separable: Top: Spiral, Circles, and Gaussian Quantiles datasets are shown.
Bottom: Output of Linear Probes on these datasets. It is clear to see that a Linear Probe cannot capture the sparsity of such a function.

Wavelets[10] are used to approximate a signal. The Geometric Wavelet [11], was shown to extend138

this notion to the terms of adaptive non-linear approximation. The importance of function sparsity in139

terms of of signal processing and representations has been thoroughly emphasized in [15] . An in-depth140

introduction to Geometric Wavelets is shown in [16].141

In order to use the appropriate functional tools, we first need to state the problem in a functional142

setting. Assume we have a square image input sample for the model of side length N . We normalize its143

values and unravel the image into a long vector of size N2. At each output layer, we again normalize144

the representation and unravel them into a vector, these will be the inputs for our functions. We now145

need to address the labels. In the multiclass classification setting, a common representation for a label146

is the one-hot-encoding. We use these encodings to represent every label as a vector in RL, for L - the147

number of classes. At each layer, the unraveled vector representations along with their vector label148

value, are considered as samples of a vector-valued function associated with the layer.149

The complete NN can be modeled as a function f : RN2 → RL. At the same time, for each150

layer k, assume there exists a function fk : Rnk → RL, that maps the unraveled feature vector of the151

k-th layer, to the label vector representation in RL. Certainly, any sample of the training set produces152

simultaneously a sample for each of these functions fk. A NN f is obviously well-trained, if for a given153

input x with label y, f(x) is close to the one-hot-encoding of y. Furthermore, for x1, ..., xn of the same154

underlying class, a well trained network will aim to cluster their representations at the intermediate155

levels. The most common loss functions are built to do just this. Although this is the penalty that is156

minimized, we claim a well trained model also aims to cluster the intermediate layers, based on the157

GT labels, and so yields a more clustered representation to be passed to the following layer. To state158

this more thoroughly, We argue that in a well trained network, each input space for such fk is more159

clustered in terms of class label, and so the function mapping it to the class label is smoother. Let us160

refine the concept of such clustering. Although we do wish that input samples of the same label be close161

in the kth output space, we need a measure that captures the possibility of several different clusters162

from a same class. This is a slightly different criterion than that of clustering. We are looking for a163

notion of good behavior, demanding that similar inputs be mapped to similar outputs.164

Using normalization (e.g.) of pixel values, we may assume that our samples xi are sampled from a165

convex domain Ω0, such as [0, 1]N
2
. Our dataset is then of the form166

{xi, f (xi)}i∈I ∈
(
Ω0,RL

)
.167

This manuscript is for review purposes only.

6 I. BEN-SHAUL, S. DEKEL

Figure 4: Numerical algorithm for estimating the transition index τ∗. The two meta-parameters, εlow in red and, εhigh in blue.

We approximate and quantify sparsity of high-dimensional non-smooth functions, using the Wavelet168

Decomposition of a Random Forest.169

3.1.1. Wavelet Decomposition of Random Forest. We begin with an overview of single170

trees. Decision Trees aim to find a sparse and efficient representation for the true, underlying function.171

At each stage, the algorithm seeks the optimal dividing hyperplane, w.r.t a Cost Function. The process172

is continued until a certain stopping criterion is fulfilled. The resulting domains are labeled as leaves.173

The general setting is as follows:174

We begin with the convex domain Ω0 as the root of the decision tree. At a given stage, for node175

Ω ⊂ Rn, a cost minimizing partition by a hyperplane is found to split Ω into Ω′,Ω′′, Ω′ ∪ Ω′′ = Ω. In176

the Variance Minimization setting, the cost that is minimized is defined as177

(3.1)
∑
xi∈Ω′

∥∥∥f(xi)− ~EΩ′

∥∥∥2

l2(RL)
+
∑
xi∈Ω′′

∥∥∥f(xi)− ~EΩ′′

∥∥∥2

l2(RL)
178

Where:179

~EΩ̂ :=
1

#
{
xi ∈ Ω̂

} ∑
xi∈Ω̂

f (xi) ~EΩ̂ ∈ RL180

The Random Forest [3] algorithm is a significant generalization of the single Decision Tree which is181

a locally ‘greedy’ algorithm. Several decision trees are constructed over random subsets of the training182

data, and inference is applied through a voting mechanism over the trees. For any point x ∈ Ω0, the183

approximation associated with the jth tree, f̃j (x), is computed by finding the leaf Ω ∈ Tj in which x is184

contained and assigning f̃j(x) := ~EΩ, where ~EΩ is the corresponding mean value of leaf Ω computed185

during training. The approximate value of a point x ∈ Ω0 is then given by186

f̃ (x) =
1

J

J∑
j=1

f̃j (x).187

This manuscript is for review purposes only.

SPARSITY-PROBE 7

We are now ready to define the Geometric Wavelet Decomposition of a Random Forest. Let188

T be a decision tree for function f . First we denote the ‘father’ wavelet as the constant function189

ψΩ0 := ~EΩ0 . In going further, let Ω′ to be a child of Ω in tree T , i.e. Ω′ ⊂ Ω and Ω′ was created by a190

partition of Ω. The wavelet ψΩ′ : Rn → RL is defined as191

ψΩ′(x) := 1Ω′(x)
(
~EΩ′ − ~EΩ

)
,192

where 1Ω′ is the indicator function of Ω′. The wavelet norm is given by193

(3.2) ‖ψΩ′‖L2
=
∥∥∥ ~EΩ′ − ~EΩ

∥∥∥
l2(RL)

∣∣Ω′∣∣1/2194

Under certain mild conditions on a decision tree T , the following holds [16]:195

(3.3) f =
∑
Ω∈T

ψΩ196

We can then define the wavelet decomposition of a RF as:197

(3.4) f̃ (x) =
1

J

J∑
j=1

∑
Ω∈Tj

ψΩ (x)198

With the Geometric Wavelet Decomposition of a Random Forest at hand, we can define the notion199

of sparsity.200

3.1.2. τ -Sparsity. We define the τ -Sparsity of tree T and parameter 0 < τ < 2,201

(3.5) Nτ (f, T) =

 ∑
Ω6=Ω0,Ω∈T

‖ψΩ‖τ2

1/τ

:= ‖{‖ψΩ‖2}Ω∈T ‖lτ202

It is easy to see that:203

(3.6) lim
τ→0

Nτ (f, T)τ = {#Ω ∈ T : ‖ψΩ‖2 6= 0} := ‖{‖ψΩ‖2}Ω∈T ‖0204

This coincides with sparsity described in [15]. Let us further denote the τ -sparsity of a forest F , by205

(3.7) Nτ (f,F) :=
1

J

 J∑
j=1

Nτ (f, Tj)τ
1/τ

=
1

J

 J∑
j=1

∑
Ω6=Ω0,Ω∈Tj

‖ψΩ‖τp

1/τ

.206

The ‖.‖τ norm is monotonically non-increasing in τ .207

3.2. τ -Sparsity Motivation.208

This manuscript is for review purposes only.

8 I. BEN-SHAUL, S. DEKEL

3.2.1. Smooth-curve Separator in R2. We begin with a lemma that gives a bound on the209

τ -sparsity of a smooth curve separator in the binary classification setting, with features in R2, and a210

dyadic non-adaptive tree.211

Lemma 3.1. Let f(x) = 1Ω̃(x), where Ω̃ ⊂ [0, 1]2 is a compact domain with a smooth boundary.212

Then, for 1 < τ < 2 , Nτ (f, TI) < ∞, where TI the tree with isotropic dyadic partitions, creating213

dyadic cubes of area 2−2k at level 2k.214

Lemma 3.2. Let f(x) =
K∑
k=1

ck1Bk(x), where Bk ⊂ Ω0 are disjoint cubes with sides parallel215

to main axes, ck ∈ R. Then, there exists an adaptive tree T , such that for every 0 < τ < 2,216

Nτ (f, T) <∞.217

Based on lemma 3.2 we can define the τ∗, as the transition index218

Definition 3.3 (transition τ -index). We define:219

(3.8) τ∗ := inf
0<τ<2

{τ |Nτ (f,F) <∞} ,220

where Nτ (f,F) is given in (3.7).We notice that due to the monotonicity of the Nτ (f,F), the transition221

index is the smallest τ such that the τ -sparsity is finite.222

It was shown in [16], [17], that under certain mild conditions, the Forest Besov-Smoothness of the223

function is equivalent to it’s τ -sparsity.224

3.3. Numerical estimation of τ∗. Since τ∗, defined in (3.8), is a complicated transition index,225

the task of estimating it is highly non trivial. Here we propose a more robust method then the methods226

proposed in [16], [17]. First, we use (3.7), to create a series of samples Nτk (f,F), for a set of discrete227

samples {τk}, 0 < τk < 2. We then approximate at these samples numerical derivatives228

N ′τ (τk) :=
∂Nτ (f,F)

∂τ
(τk).229

We use the angles of the derivatives230

θ(τk) := arctan(N ′τ (τk)),231

to estimate the transition index τ∗. Now, observe that the transition index is associated with an ‘infinite’232

derivative, or equivalently an angle of −π/2. To this end, we use two meta parameters: εlow, εhigh, and233

define234

S := {τk : −π
2

+ εlow ≤ θ(τk) ≤ −
π

2
+ εhigh}.235

We now define the transition index by τ∗ := 1
|S|
∑

τk∈S τk. A demonstration is shown in Figure 4.236

4. Experiments. The experiments throughout the paper use εlow = 0.1, εhigh = 0.4. We use237

a three trees, with maximal depth 15. The sparsity-probe is deployed on the input layer, and all238

intermediate model layers. We do not test the sparsity at the final model layer. For each dataset, each239

model is trained with three different initialization seeds, and approximated throughout the layers.240

This manuscript is for review purposes only.

SPARSITY-PROBE 9

Table 1: τ -Sparsity of synthetic datasets. Although the datasets are completely separable by a smooth curve, due to its non-linearity - the
Linear Probes cannot quantify this separability.

Dataset τ∗

Spiral 0.98
Circles 0.93

GQ 0.99

4.1. Sparsity Probe on the synthetic datasets. We saw that the Linear Probes cannot241

quantify the separability of the synthetic datasets presented in Figure 3. We show the τ∗ estimate242

on these datasets. Lemma 3.1 that provides a bound for sparsity using a non adaptive decision tree,243

suggests that when using adaptive tree partitions, we should expect a sparsity τ∗ ≤ 1. The numerical244

estimates for the τ∗ values are reported in Table 1. As the distance between the classes in the Circles245

dataset is largest, the τ∗ is indeed the lowest. The Spiral dataset has more distance between the classes246

than in the Gaussian Quantiles, and so its τ∗ is slightly lower.247

4.1.1. Comparison of the Sparsity Probe transition index to Clustering indices. Al-248

though clustering is closely related to sparsity, there are caveats that yield it inaccurate when trying to249

evaluate the separation of a latent space:250

(i) Most clustering methods do not deal well with non linearly separated data. KMeans, for251

example cannot handle well the synthetic datasets of Figure 3, and its outcome will be similar252

to those of the Linear Probes. More advanced Hierarchical Clustering methods can be used to253

improve this issue in some scenarios.254

(ii) When we look at the latent spaces of deep intermediate layers, we expect to observe well-255

separated clusters. However, in the shallow layers this is simply not true and there are scenarios256

where the geometry of shallow layers is too vague for most clustering indices.257

4.2. Sparsity-Probe on Neural Networks. In order to fully approximate the true functional258

setting of Deep Neural networks, which are known to be unstable[56], we train each network with 3259

different seeds, and approximate τ∗ for each of the intermediate layers. We then set the mean of the260

3 sparsity index estimates as the estimated index. In some of the figures we also render the certainty261

intervals of the graphs of τ∗.262

Definition 4.1 (α-Score). A closely related definition to τ -sparsity is the α-score. For the critical263

0 < τ∗ < 2, the α∗-index is defined as264

(4.1) α∗ :=
1

τ∗
− 1

2
> 0265

In the following sections we report the critical α-score found by the algorithm. Since they have an266

inverse relation, we are looking for the highest α-score.267

4.2.1. Analyzing the contribution of adding depth to a network. Suppose we wish to268

create a model for the CIFAR10 dataset, and decide to use a VGG[48] architecture. It is natural to ask269

This manuscript is for review purposes only.

10 I. BEN-SHAUL, S. DEKEL

Figure 5: Comparing VGG-{13, 16, 19} on the CIFAR-10 datasets for 100 Epochs. VGG19 is also shown after 50 Epochs. Layers are
either MaxPooling(Markers) or Convolutional. We omit the first 5 layers of each network.

- how deep should our model be? Too few layers and the accuracy could be low, too many and the270

model capacity will be too high, and lead to overfitting. Furthermore, can we actually quantify the271

contribution of each added layer to the outcome? We train the VGG{ 13, 16, 19} architecture variants272

on CIFAR10 for 100 Epochs and estimate the sparsity at the output of every MaxPooling layer and of273

every Convolutional layer beginning from the 5th layer. For VGG19, we also report α∗ after 50 Epochs.274

Results are shown in 5. Observe that the Sparsity Probe reveals certain interesting properties of the275

different architectures:276

(i) As expected, in general, deeper architectures have the capacity to increase the sparsity and this277

correlates with the accuracy testing results.278

(ii) However, we see a certain sparsity saturation phenomena with the VGG16 architecture, where279

the added layers of VGG19 do not drastically improve sparsity. This correlates with the testing280

results, where both architectures produce similar accuracy.281

(iii) When comparing the VGG19 trained on 50 epochs with the same architecture trained for 100,282

it is apparent that the separability improves, most noticeably towards the end of the network.283

(iv) We can also see that the MaxPooling layers usually cause a dip in α∗. This can be attributed to284

the fact that max-pooling is a non-learned, coarse discretization layer.285

4.2.2. Using the Sparsity Probe to compare different architectures. We wish to asses286

the probe’s ability to analyze problematic architectures that do not perform well on the testing data,287

e.g, that are not able to generalize [28] (recall that our probe only uses the training data). We report288

our results on the Fashion-MNIST[52] dataset. As mentioned before, modern architectures in Machine289

Learning consist of two parts - the feature extractor and the classifier. The main role of the feature290

This manuscript is for review purposes only.

SPARSITY-PROBE 11

Figure 6: Comparing good and bad architectures α-scores on the Fashion-MNIST dataset. The Sparsity-Probe is able to differentiate the
quality of the models, and see the inter layer improvements.

extractor is to transform the latent features into more easily separable latent embeddings. Convolu-291

tional Layers(ConvLayers) are used to learn increasingly complicated features across layers, by using292

spatial relations. Suppose one were to create an entirely different architecture that alternates between293

ConvLayers and linear layers. Every output of a linear layer is transformed into a square as an input294

into the ConvLayer. Looking at the α∗ in Fig. 6(Left), we see that for the dark-blue line, the scores295

decrease throughout the layers. The light-blue line reports a model trained on a Resnet18[25] variant,296

with smaller channel sizes, and inputs of gray-scale images. α-scores are measured at the end of every297

residual connection, and in edge layers. A general theme which is shown is that the true rise of the α∗298

happens towards the end of the network. This can be explained by the strength of the gradients that299

arrive at the earlier layers.300

4.2.3. Fashion-MNIST - Clustering Correlation. It is natural to ask how α∗ behaves com-301

pared to clustering statistics. We would expect high correlation between the metrics when the model302

latent features are well clustered, and low correlation when the features are not well clustered, or303

clustered into many different clusters per-label.304

To test this, we run the KMeans clustering algorithm with k = 10 on each of the layer features,305

using the models from the previous section. Figure 6(Right) shows the clustering statistics compared in306

each intermediate layer. In the good models, the correlation between the sparsity and the clustering307

statistics is positive, demonstrating the data gathers into better label-groups as the layers progress.308

However, in under performing models, the clustering indices do not manage to asses how bad is the309

geometry of the represnetations in the intermediate layers. Moreover, in this example, the clustering310

indices fail to capture the fact that the representations get ‘worse’ throughout the layers.311

This manuscript is for review purposes only.

12 I. BEN-SHAUL, S. DEKEL

Table 2: Pearson Correlation: α-scores vs. Clustering on the Fashion-MNIST dataset

Metric Bad Good

Rand Index - adjusted for chance -0.41 0.96
Adjusted Mutual Information -0.41 0.93

Homogeneity -0.39 0.94
Completeness -0.43 0.93

Fowlkes-Mallows Index -0.43 0.96

We can demonstrate this by using the Pearson Correlation coefficient between each of the clustering312

statistics and α∗ on all model layers. These results are reported in table 2.313

4.2.4. Case Study - MNIST-1D. Recent work [20] propose a 1D parallel to the well-known314

MNIST. The intention of this dataset is to scale down the dimension of the MNIST, and essentially315

turn the classes into different signals. The authors also show how, as opposed to MNIST, the signals316

are intertwined in the input space, and are then much less separable. One could ask - does the model317

improve throughout the epochs? We use this dataset, with a simple 7-layer Convolutional Neural318

Network, and monitor the α∗ at every 10 epochs. The results are shown in figure 7. It is clear that the319

model not only improves in the final layer, but is able to create a smoother increase in the intermediate320

layers, as we progress through the epochs.321

4.2.5. Case study- Image classification from the magnitude of Fourier coefficients.322

The problem of Phase Retrieval(PR) is defined as recovering the an image solely using the magnitude323

of its Fourier transform coefficients. This is a problem that arises in many applications and is obviously324

an ill-posed inverse problem. Here, we experiment with DL architectures that aim to classify images325

from the MNIST dataset, again, using only the magnitude of the Fourier coefficients as input. At first,326

it seems natural to use a standard convolutional network for this classification task. However, as is327

clear from Figure 8, this approach completely fails. As the plot of the α∗ score for this model shows,328

the network fails to ’unfold’ the data and the test accuracy score is very low. The explanation for this329

phenomena is that architectures based on convolutions assume there are spatial correlations between330

neighbouring pixels in the input or features in the feature maps. However, this is not true in the Fourier331

domain. As we see in Figure 8, when one applies a fully-connected network architecture, it is able to332

learn features which are not of spatial nature. We see how the Sparsity Probe is able to capture the fit of333

the network to the problem.334

5. Analyzing and debugging architectures. In this section we leverage the sparsity-probe335

to analyze model architectures and detect problematic layers. We use a 7-layer Convolutional Network336

with Batch Norm [27], RELU activation function, and two linear classification layers. Each model is337

trained with 3 different initialization seeds, for 100 Epochs on the MNIST-1D dataset. We show direct338

correlations between the α∗ and the test accuracy, even though the α∗ are computed solely from the339

train dataset.340

This manuscript is for review purposes only.

SPARSITY-PROBE 13

Figure 7: Comparing different epochs during train of a 7-Layer convolutional network on the MNIST-1D dataset. It is clear that the α-scores
improve through the epochs, and show a smoother rise, with more contribution at every layer.

5.0.1. Picking the Batch Size. Given a network architecture, meta-parameters still need to341

be fine-tuned for network training. The batch size is of critical importance as it is constrained by the342

compute, but also by the affects in the optimization algorithm. If the batch-size is too large, many343

gradients of different directions can lead to slower convergence. However, if the batch size is too small,344

the batch can be non-representative of the dataset and lead to a wrong gradient step. In Figure 9 we345

compare different Batch Sizes. From the analysis, it is apparent that a batch-size of 512 is too large, and346

results in lower α∗, and accordingly test scores. Batch sizes of 64 and 128 behave similarly in terms of347

α∗, with a slight advantage to 64, matching the test-scores. Using the sparsity-probe to investigate, we348

can understand the trade-off between the computational cost and the added gain.349

5.0.2. Picking the Activation Function. The activation function is one of the most dismissed350

architecture choices, yet known to be vital. In modern architectures, mostly ReLU activations are used.351

Suppose we are trying to create a new activation function, by using a simple step function:352

f(x) =

{
1, if x > 0.

0, otherwise.
353

This is obviously a problematic activation value, as value magnitudes are not considered. We wish354

to compare it to other nonlinearities. During first works in Neural Networks, the Sigmoid[22] was355

proposed as a nonlinearity. It was later shown to promote several issues, such as vanishing gradients.356

Different alternatives to ReLU have been proposed such as Leaky-ReLU, and GELU [26]. We compare357

these activations on the specific task in figure 10. For this particular dataset, we see a dominance of358

This manuscript is for review purposes only.

14 I. BEN-SHAUL, S. DEKEL

Figure 8: Comparing Fully-Connected and Convolutional architectures on MNIST classification using only Fourier-intensity of the images.
It is clear that the α-scores of the architectures match the intuition in this task, as the Fourier Domain does not consist of spatial features,
and will therefore fail when using convolutional layers.

the ReLU to other activations. The ReLU variants - Leaky ReLU and GELU are relatively close in359

performance. The Sigmoid is indeed far lower in terms of α∗, and we see a dip during train. Lastly, the360

proposed nonlinearity fails magnificently, and the α∗ get worse throughout the layers. Remarkably, the361

Sparsity-Probe perfectly matches the ordering of the test scores!362

5.0.3. Increasing the Stride. Suppose we are trying to improve our architecture, by increasing363

the stride at the 4th layer, from 2 to 5, while the kernel size remains the same(3). This would of course364

result in a loss of information, as the receptive field does not cover the entire input. A comparison of365

the α∗ is shown in Figure 11. It is clear that during the 4th layer there is a big dip in the α∗. This affects366

the performance of earlier layers, yet we see an increase after the problematic layer. Using our tool,367

without looking at the test scores, we can pinpoint the exact location where the network fails.368

5.0.4. Batch Normalization. Batch Normalization has proved extremely helpful for the sta-369

bility of training, especially in very deep network architectures. Suppose we are trying to test the370

affects of the Batch Norm(BN), by only applying it at the first k layers. In figure 12 we report such371

comparison, with respect to the base architecture, that includes Batch Normalization at all ConvLayers.372

It is significant to see that the addition of each BN layer increases the α∗, and accordingly, the test373

scores.374

6. Conclusion. In this paper, we present the Sparsity-Probe, a new method for measuring375

supervised model quality using sparsity considerations. We give an in-depth explanation of the376

numerical algorithm and its theoretic background. We give motivation to why the mathematical377

This manuscript is for review purposes only.

SPARSITY-PROBE 15

Figure 9: Comparing different Batch-Sizes on the MNIST-1D dataset using the Sparsity-Probe.

complexity in this method is necessary for promising results. We show how this method relates to378

clustering metrics, and show that our method approximates the theoretical bound on a simple 2D379

synthetic dataset. Our experiments are conducted onto different datasets and have various end goals.380

We show how the Sparsity-Probe can be used to assess a model quality without an auxiliary test set.381

This leads to many downstream capabilities such as finding flaws in the architecture and selecting a382

robust model.383

Appendix A. Proofs.384

Proof of Lemma 3.1. Let TI be the non-adaptive tree with partitions at dyadic values along the385

main axes. TI partitions [0, 1]2 into 2k rectangles of area 2−k on level k. Since we are in the binary386

setting, the output range is the interval [0, 1] and for Ω ∈ TI , EΩ is a scalar.387

This manuscript is for review purposes only.

16 I. BEN-SHAUL, S. DEKEL

Figure 10: Comparing different Activation Functions on the MNIST-1D dataset using the Sparsity-Probe. We see correlation between the
Test Scores and the α∗ scores in the last level. The proposed ’Step’ activations α∗ scores deteriorate throughout the layers.

Let l(Ω) be the level in which domain Ω was created in TI . The τ -Sparsity of TI is given by:388

Nτ (f, TI) :=

 ∑
Ω′∈TI ,Ω′ 6=[0,1]2

‖ψΩ′‖τ2

1/τ

389

=

 ∑
Ω′∈TI ,Ω′ 6=[0,1]2

|EΩ′ − EΩ|τ |Ω′|
τ
2

1/τ

390

=

 ∑
Ω′∈TI ,l(Ω′)=k,k>0

|EΩ′ − EΩ|τ |Ω′|
τ
2

1/τ

391

392

Let Ω′ ∈ TI , and Ω ∈ TI be its parent in TI . If Ω′ ∩ ∂Ω̃ = ∅, and Ω∩ ∂Ω̃ = ∅ then EΩ′ − EΩ = 0.393

Otherwise, if l(Ω′) = k,394

|EΩ′ − EΩ|τ |Ω′|
τ
2 ≤ 2

−τk
2395396

Therefore,397

Nτ (f, TI)τ ≤
∑

Ω′∈TI ,k>0

2
−τk
2 #Ak398

399

This manuscript is for review purposes only.

SPARSITY-PROBE 17

Figure 11: Adding a disproportionately big stride in the 4th layer. We see a sharp decrease in the 4th layer α∗-scores, and a slow increase
after that. It is interesting to notice that there is a decrease in α∗-scores in the first three layers. This is because the gradients are blocked by
the 4th layer bottleneck.

Where Pa(Ω′) is the parent of Ω′ in TI , and400

Ak := {Ω′ : Ω′ ∈ TI , l(Ω′) = k,Pa(Ω′) = Ω, (Ω′ ∩ ∂Ω̃ 6= ∅ ∨ Ω ∩ ∂Ω̃ 6= ∅)}.401

We claim that402

#Ak =≤ C(Ω̃)2b
k+1
2 c.(A.1)403404

Where C(Ω̃) is a constant dependant of the domain Ω̃. This implies that405

Nτ (f, TI)τ ≤ C(Ω̃)

(∞∑
k=1

2
−τk
2

+b k+1
2 c
)

406

= C(Ω̃)

 ∞∑
j=1

2
−τ(2j)

2
+b 2j+1

2 c +

∞∑
j=1

2
−τ(2j+1)

2
+b 2j+2

2 c
407

= C(Ω̃)

(1 + 21− τ
2)
∞∑
j=1

2−j(τ−1)

408

409

and so,410

Nτ (f, TI) <∞⇔ τ > 1411

This manuscript is for review purposes only.

18 I. BEN-SHAUL, S. DEKEL

Figure 12: Comparing BatchNorm on a different array of layers using the Sparsity-Probe. We see the added benefit of adding every BN
layer.

Let us return to the estimate A.1. We define:412

Bk := {Ω′ : Ω′ ∈ TI , l(Ω′) = k,Ω′ ∩ ∂Ω̃ 6= ∅}.413

We notice that if:414

#Bk ≤ C(Ω̃)2b
k+1
2 c,(A.2)415416

then the following relation holds:417

#Ak ≤ #Bk + #Bk+1418

≤ C1(Ω̃)2b
k+1
2 c + C2(Ω̃)2b

k+2
2 c419

≤ C(Ω̃)2b
k+1
2 c.420421

Let us now show A.2. First, we notice that it is enough to show that for every even layer 2k,422

#B2k < C(Ω̃)2k = C(Ω̃)2b
2k+1

2 c. Once this is shown, for every odd layer, 2k + 1, the amount of423

domain intersections with the ∂Ω̃ is at most the number of intersections in the next layer:424

#B2k+1 ≤ #B2k+2 ≤ C(Ω̃)2k+1 = C(Ω̃)2b
2k+1

2 c425

Let us look at the boundary Ω̃ at an even layer 2k. There are a finite number of points where the gradient426

of the boundary is aligned with one of the main axes. Between these points the boundary segments427

This manuscript is for review purposes only.

SPARSITY-PROBE 19

Figure 13: Visualization of bound on the number of cubes that intersect with the boundary ∂Ω̃, (#B2k) at level 2k.

are monotone in x1 and x2 and therefore the amount of cubes it intersects is at most 2× 2k. This is428

because on axis x1, the boundary is monotone, and so it can intersect at most 2k dyadic cubes. The429

same goes for axis x2. We can then bound the total number of intersections at level 2k by C(Ω̃)2k,430

where C(Ω̃) is determined by the number of points where the boundary gradient is aligned with one of431

the main axes. This bound is visualized in figure 13.432

Proof of Lemma 3.2. Let f(x) =
K∑
k=1

ck1Bk(x), where Bk ⊂ Ω0 are disjoint cubes with sides433

parallel to main axes, ck ∈ R. Since the cubes {Bk} are disjoint, it is possible to find a tree TA such434

that at level N0, each cube Bk is in a separate domain ΩBk . The sides of Bk are parallel to the main435

axes, and so it is possible to partition ΩBk 4 times, such that the resulting partition Ω′Bk is exactly Bk436

with value Ck. We notice, that any partition after this level, l = N1, the value of f does not change,437

and therefore the for wavelets ψΩ′438

~EΩ′ − ~EΩ = ~0439

This manuscript is for review purposes only.

20 I. BEN-SHAUL, S. DEKEL

Figure 14: Example adaptive tree TA on f(x) =
K∑
k=1

ck1Bk
(x).

and,440

‖ψΩ′‖L2
=
∥∥∥ ~EΩ′ − ~EΩ

∥∥∥
l2(RL)

∣∣Ω′∣∣1/2 = 0.441

Therefore,442

Nτ (f, TA)τ :=
∑

Ω′∈TA,Ω′ 6=[0,1]n

‖ψΩ′‖τ2443

=
∑

Ω′∈TA,Ω′ 6=[0,1]n,l(Ω′)≤N1

‖EΩ′ − EΩ‖τl2 |Ω
′|
τ
2444

<∞445446

where the last transition is true since we are adding a finite amount of finite values. A visualization447

of a possible TA is shown in figure 14.448

REFERENCES449

[1] G. ALAIN AND Y. BENGIO, Understanding intermediate layers using linear classifier probes, (2017).450

This manuscript is for review purposes only.

SPARSITY-PROBE 21

[2] Y. BENGIO, A. COURVILLE, AND P. VINCENT, Representation learning: A review and new perspectives, IEEE451
transactions on pattern analysis and machine intelligence, 35 (2013), pp. 1798–1828.452

[3] L. BREIMAN, Random forests, Mach. Learn., 45 (2001), pp. 5–32, https://doi.org/10.1023/A:1010933404324, https:453
//doi.org/10.1023/A:1010933404324.454

[4] T. CHEN, S. KORNBLITH, M. NOROUZI, AND G. HINTON, A simple framework for contrastive learning of visual455
representations, in International conference on machine learning, PMLR, 2020, pp. 1597–1607.456

[5] T.-H. CHEUNG AND D.-Y. YEUNG, {MODALS}: Modality-agnostic automated data augmentation in the latent space,457
in International Conference on Learning Representations, 2021, https://openreview.net/forum?id=XjYgR6gbCEc.458

[6] F. CHOLLET, Deep Learning with Python, Manning, Nov. 2017.459
[7] U. COHEN, S. CHUNG, D. D. LEE, AND H. SOMPOLINSKY, Separability and geometry of object manifolds in deep460

neural networks, Nature Communications, 11 (2020), 746, p. 746, https://doi.org/10.1038/s41467-020-14578-5.461
[8] C. CORTES AND V. VAPNIK, Support-vector networks, Machine learning, 20 (1995), pp. 273–297.462
[9] E. D. CUBUK, B. ZOPH, D. MANE, V. VASUDEVAN, AND Q. V. LE, Autoaugment: Learning augmentation policies463

from data, 2019, https://arxiv.org/pdf/1805.09501.pdf.464
[10] I. DAUBECHIES, Ten Lectures on Wavelets, SIAM, 1992, https://doi.org/10.1137/1.9781611970104, https://doi.org/10.465

1137/1.9781611970104.466
[11] S. DEKEL AND D. LEVIATAN, Adaptive multivariate approximation using binary space partitions and geometric467

wavelets, SIAM J. Numer. Anal., 43 (2005), p. 707–732, https://doi.org/10.1137/040604649, https://doi.org/10.468
1137/040604649.469

[12] R. A. DEVORE, Nonlinear approximation, Acta Numerica, 7 (1998), p. 51–150, https://doi.org/10.1017/470
S0962492900002816.471

[13] R. A. DEVORE, B. JAWERTH, AND B. J. LUCIER, Image compression through wavelet transform coding, IEEE472
Transactions on Information Theory, 38 (1992), pp. 719–746, https://doi.org/10.1109/18.119733.473

[14] J. C. DUCHI, E. HAZAN, AND Y. SINGER, Adaptive subgradient methods for online learning and stochastic474
optimization, in J. Mach. Learn. Res., 2011.475

[15] M. ELAD, Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing,476
Springer, 2010, https://doi.org/10.1007/978-1-4419-7011-4, https://doi.org/10.1007/978-1-4419-7011-4.477

[16] O. ELISHA AND S. DEKEL, Wavelet decompositions of random forests - smoothness analysis, sparse approximation and478
applications, Journal of Machine Learning Research, 17 (2016), pp. 1–38, http://jmlr.org/papers/v17/15-203.html.479

[17] O. ELISHA AND S. DEKEL, Using function space theory for understanding intermediate layers, 2018.480
[18] D. ERHAN, Y. BENGIO, A. COURVILLE, AND P. VINCENT, Visualizing higher-layer features of a deep network,481

(2009).482
[19] I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep Learning, The MIT Press, 2016.483
[20] S. GREYDANUS, Scaling down Deep Learning, arXiv e-prints, (2020), arXiv:2011.14439, p. arXiv:2011.14439,484

https://arxiv.org/abs/2011.14439.485
[21] J.-B. GRILL, F. STRUB, F. ALTCHÉ, C. TALLEC, P. H. RICHEMOND, E. BUCHATSKAYA, C. DOERSCH, B. AVILA486

PIRES, Z. D. GUO, M. GHESHLAGHI AZAR, B. PIOT, K. KAVUKCUOGLU, R. MUNOS, AND M. VALKO,487
Bootstrap your own latent: A new approach to self-supervised Learning, arXiv e-prints, (2020), arXiv:2006.07733,488
p. arXiv:2006.07733, https://arxiv.org/abs/2006.07733.489

[22] J. HAN AND C. MORAGA, The influence of the sigmoid function parameters on the speed of backpropagation learning,490
in From Natural to Artificial Neural Computation, J. Mira and F. Sandoval, eds., Berlin, Heidelberg, 1995, Springer491
Berlin Heidelberg, pp. 195–201.492

[23] D. HARRIS AND S. HARRIS, Digital Design and Computer Architecture, Morgan Kaufmann Publishers Inc., San493
Francisco, CA, USA, 2007.494

[24] K. HE, H. FAN, Y. WU, S. XIE, AND R. B. GIRSHICK, Momentum contrast for unsupervised visual representation495
learning, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), pp. 9726–496
9735.497

[25] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recognition, in Proceedings of the IEEE498
conference on computer vision and pattern recognition, 2016, pp. 770–778.499

[26] D. HENDRYCKS AND K. GIMPEL, Gaussian error linear units (gelus), arXiv: Learning, (2016).500
[27] S. IOFFE AND C. SZEGEDY, Batch normalization: Accelerating deep network training by reducing internal covariate501

shift, in International conference on machine learning, PMLR, 2015, pp. 448–456.502
[28] Y. JIANG, B. NEYSHABUR, H. MOBAHI, D. KRISHNAN, AND S. BENGIO, Fantastic generalization measures and503

where to find them, ArXiv, abs/1912.02178 (2020).504

This manuscript is for review purposes only.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://openreview.net/forum?id=XjYgR6gbCEc
https://doi.org/10.1038/s41467-020-14578-5
https://arxiv.org/pdf/1805.09501.pdf
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1137/040604649
https://doi.org/10.1137/040604649
https://doi.org/10.1137/040604649
https://doi.org/10.1137/040604649
https://doi.org/10.1017/S0962492900002816
https://doi.org/10.1017/S0962492900002816
https://doi.org/10.1017/S0962492900002816
https://doi.org/10.1109/18.119733
https://doi.org/10.1007/978-1-4419-7011-4
https://doi.org/10.1007/978-1-4419-7011-4
http://jmlr.org/papers/v17/15-203.html
https://arxiv.org/abs/2011.14439
https://arxiv.org/abs/2006.07733

22 I. BEN-SHAUL, S. DEKEL

[29] P. KHOSLA, P. TETERWAK, C. WANG, A. SARNA, Y. TIAN, P. ISOLA, A. MASCHINOT, C. LIU, AND D. KRISHNAN,505
Supervised contrastive learning, ArXiv, abs/2004.11362 (2020).506

[30] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, CoRR, abs/1412.6980 (2015).507
[31] R. KOHAVI, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Proceedings of508

the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, San Francisco, CA, USA,509
1995, Morgan Kaufmann Publishers Inc., p. 1137–1143.510

[32] D. T. LAROSE, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley-Interscience, USA, 2004.511
[33] Y. LECUN, Y. BENGIO, AND G. HINTON, Deep learning, Nature, 521 (2015), pp. 436–444, https://doi.org/10.1038/512

nature14539, https://doi.org/10.1038/nature14539.513
[34] J. LEE, Y. BAHRI, R. NOVAK, S. SCHOENHOLZ, J. PENNINGTON, AND J. SOHL-DICKSTEIN, Deep neural networks514

as gaussian processes, ArXiv, abs/1711.00165 (2018).515
[35] W. LOH, Classification and regression trees, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,516

1 (2011).517
[36] J. LU, Z. SHEN, H. YANG, AND S. ZHANG, Deep network approximation for smooth functions, arXiv 2001.030402v2,518

(2020).519
[37] J. B. MACQUEEN, Some methods for classification and analysis of multivariate observations, 1967.520
[38] S. MALLAT, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, Academic Press, Inc., USA, 3rd ed.,521

2008.522
[39] L. MCINNES AND J. HEALY, Umap: Uniform manifold approximation and projection for dimension reduction, ArXiv,523

abs/1802.03426 (2018).524
[40] G. MONTAVON, M. L. BRAUN, AND K.-R. MÜLLER, Kernel analysis of deep networks, Journal of Machine Learning525

Research, 12 (2011), pp. 2563–2581, http://jmlr.org/papers/v12/montavon11a.html.526
[41] C. OLAH, A. SATYANARAYAN, I. JOHNSON, S. CARTER, L. SCHUBERT, K. YE, AND A. MORD-527

VINTSEV, The building blocks of interpretability, Distill, (2018), https://doi.org/10.23915/distill.00010.528
https://distill.pub/2018/building-blocks.529

[42] V. PAPYAN, Y. ROMANO, AND M. ELAD, Convolutional neural networks analyzed via convolutional sparse coding, J.530
Mach. Learn. Res., 18 (2017), pp. 83:1–83:52.531

[43] D. R. AND L. G., Constructive approximation, 1993.532
[44] B. D. RIPLEY AND N. L. HJORT, Pattern Recognition and Neural Networks, Cambridge University Press, USA,533

1st ed., 1995.534
[45] H. ROBBINS AND S. MONRO, A Stochastic Approximation Method, The Annals of Mathematical Statistics, 22 (1951),535

pp. 400 – 407, https://doi.org/10.1214/aoms/1177729586, https://doi.org/10.1214/aoms/1177729586.536
[46] Z. SHEN, H. YANG, AND S. ZHANG, Deep network approximation characterized by number of neurons, Communica-537

tions in Computational Physics, 28 (2020), pp. 1768–1811.538
[47] R. SHWARTZ-ZIV AND N. TISHBY, Opening the black box of deep neural networks via information, ArXiv,539

abs/1703.00810 (2017).540
[48] K. SIMONYAN AND A. ZISSERMAN, Very deep convolutional networks for large-scale image recognition, CoRR,541

abs/1409.1556 (2015).542
[49] N. SRIVASTAVA, G. HINTON, A. KRIZHEVSKY, I. SUTSKEVER, AND R. SALAKHUTDINOV, Dropout: A simple way543

to prevent neural networks from overfitting, Journal of Machine Learning Research, 15 (2014), pp. 1929–1958,544
http://jmlr.org/papers/v15/srivastava14a.html.545

[50] J. SULAM, V. PAPYAN, Y. ROMANO, AND M. ELAD, Multilayer convolutional sparse modeling: Pursuit and546
dictionary learning, IEEE Transactions on Signal Processing, 66 (2018), pp. 4090–4104.547

[51] A. VASWANI, N. M. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ, L. KAISER, AND I. POLO-548
SUKHIN, Attention is all you need, ArXiv, abs/1706.03762 (2017).549

[52] H. XIAO, K. RASUL, AND R. VOLLGRAF, Fashion-mnist: a novel image dataset for benchmarking machine learning550
algorithms, ArXiv, abs/1708.07747 (2017).551

[53] D. YAROTSKY, Error bounds for approximations with deep relu networks, Neural networks : the official journal of the552
International Neural Network Society, 94 (2017), pp. 103–114.553

[54] D. YAROTSKY, Optimal approximation of continuous functions by very deep relu networks, in COLT, 2018.554
[55] J. ZBONTAR, L. JING, I. MISRA, Y. LECUN, AND S. DENY, Barlow twins: Self-supervised learning via redundancy555

reduction, ArXiv, abs/2103.03230 (2021).556
[56] S. ZHENG, Y. SONG, T. LEUNG, AND I. GOODFELLOW, Improving the robustness of deep neural networks via stability557

training, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), pp. 4480–4488.558

This manuscript is for review purposes only.

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://jmlr.org/papers/v12/montavon11a.html
https://doi.org/10.23915/distill.00010
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
http://jmlr.org/papers/v15/srivastava14a.html

	Introduction
	Related Research and Concepts
	Statistical Approach
	Approximation-Theoretical Approach
	Sparsity-Based Approach
	Linear and Kernel Probes

	Formulation
	Preliminaries
	Wavelet Decomposition of Random Forest
	-Sparsity

	-Sparsity Motivation
	Smooth-curve Separator in R2

	Numerical estimation of *

	Experiments
	Sparsity Probe on the synthetic datasets
	Comparison of the Sparsity Probe transition index to Clustering indices

	Sparsity-Probe on Neural Networks
	Analyzing the contribution of adding depth to a network
	Using the Sparsity Probe to compare different architectures
	Fashion-MNIST - Clustering Correlation
	Case Study - MNIST-1D
	Case study- Image classification from the magnitude of Fourier coefficients

	Analyzing and debugging architectures
	Picking the Batch Size
	Picking the Activation Function
	Increasing the Stride
	Batch Normalization

	Conclusion
	Appendix A. Proofs

