Mathematical foundations of Machine
Learning 2024 - lesson 4

Shai Dekel

000

TEL AVIV UNIVERSITY

Random Forest

* 0. Elisha and S. Dekel, Wavelet decompositions of
Random Forests — smoothness analysis, sparse
approximation and applications, JMLR 2016

Ou
fou

INclu

r goal Is to provi
ficial Intelligence (Al) which

ndation for Arti
des classic Mac

de a holistic mathematical

Nnine Learning (ML) and Deep

Learning (DL) through:

Approximation Theory, Function space theory,

Geometric

Harmonic Analysis

Function space representation

Assume we have a dataset feature vectors of size n,.

We normalize the feature values to [0,1].

Each feature vector is associated with response variable (regression) or one of

L class labels (classification).
In the latter case we map each label to its one-hot-encoding in RE

Thus, now the dataset is composed of samples of a function

fO: [O)l]no — IRL

Decision trees

In the functional setting we are given a function
fel(Q,), Q,cR"

In practice / applications, we get samples

f(x), xe€Q, iel

We apply recursive subdivision of the data

n{./“\nl
RN RN

oo i 4o h

il.“ LOF ,ﬂ
.'-._"'F" fw’xf._l L1
oY
e o |
/ {1

)

Decision trees — regression

Recursive ‘locally greedy’ subdivisions by hyperplanes

i, 35 (106)=Qu (%)) + 2 (F(6)=Qur ()

X; Q"

Q1 Qo €I1, , multivariate polynomials. Forr =1

Qu(X)=Cqy = {XEQ X;‘;f / Q’u\\g’
Qu (X)=Cy = >

e 2

X, Q"

Node stopping criteria: minimal number of points, error threshold, etc.

Decision trees in high dimensions

Performance considerations typically dictate:

- Searching for subdivisions along main axes only (special cases of
hyper-planes)

- At each node, random pre-selection of feature/coordinate
subset for this search (e.g.\/ﬁ, where N is dimension of feature
space).

- Sometimes, statisticians consider this random pre-selection as
good ‘diversity’ practice.

- Using only piecewise constant approximation.

Decision tree inference

Incoming new data X € Qy, X =(X,...,X,)

f(x)=Qqu(x),
where,
(i) Xe,
(i) Q' e 7, isaleaf

Random Forest

* ‘Best’ decision tree: NP-hard problem!
* Goal: overcome the ‘greedy nature’ of a single tree.

e ‘Bagging’: For each j, we select a random subset X' consisting
of 80% of the input data points.

e Over each random subset we create a tree 71

* Here, the random ‘diversity’ is also justified from approximation
theoretical perspective.

Decision Tree-1 Decision Tree-2 Decision Tree-|

l l

Result-1 Result-2 Result-N

LH Majority Voting / Averaging

Final Result

Random Forest

* Each tree 7., 1< j < J, provides regression

f.(x)=Q,(x), xe€Q, Qe7] isaleaf.

* Random forest over-complete regression

J J
f(x)=>wf(x) >w =L
j=1 =1

» Adding trees = convergence to ‘minimal risk’ [Breiman 2001]

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion="gini', max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_welight_fraction_leaf=0.0, max_features="auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None,
ccp_alpha=0.0, max_samples=None) [source]

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses
averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the max_samples
parameter if bootstrap=True (default), otherwise the whole dataset is used to build each tree.

Read more in the User Guide.

Parameters: n_estimators : int, default=100
The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in 0.22.

criterion : {"gini”, “entropy”}, default="gini"
The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy”
for the information gain. Note: this parameter is tree-specific.

max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves

contain less than min_samples_split samples.
11

min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:

e If int, then consider min_samples split as the minimum number.
o |f float, then min samples split is a fraction and ceil(min samples split * n_samples) are the minimum
number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node. A split point at any depth will only be
considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This
may have the effect of smoothing the model, especially in regression.

e If int, then consider min_samples leaf as the minimum number.
o |f float, then min samples leaf is a fraction and ceil(min samples leaf * n samples) are the minimum
number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf
node. Samples have equal weight when sample_weight is not provided.

12

max_features : {“auto”, “sqrt”, “log2”}, int or float, default="auto”
The number of features to consider when looking for the best split:

e |f int, then consider max_features features at each split.

e [f float, then max_features is a fraction and round(max_features * n_features) features are considered at
each split.

e |f "auto”, then max_features=sqrt(n_features).

e |f "sqrt”, then max_features=sqrt(n_features) (same as “auto”).

e If "log2", then max_features=log2(n_features).

e If None, then max_features=n features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if
it requires to effectively inspect more than max_features features.

max_leaf nodes : int, default=None
Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.

min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

Nt/ N* (impurity - Nt R / N_t * right_impurity
- Nt L/ HNt* left impurity)

where N is the total number of samples, N_t is the number of samples at the current node, N_t_L is the
number of samples in the left child, and n_t_R is the number of samples in the right child.

N, N_t, Nt Rand N_t_L all refer to the weighted sum, if sample weight is passed. 13

bootstrap : bool, default=True
Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each

tree.

oob score : bool, default=False
Whether to use out-of-bag samples to estimate the generalization score. Only available if bootstrap=True.

n_jobs : int, default=None
The number of jobs to run in parallel. fit, predict, decision_path and apply are all parallelized over the trees.
None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for

more details.

random_state : int, RandomState instance or None, default=None
Controls both the randomness of the bootstrapping of the samples used when building trees (if
bootstrap=True) and the sampling of the features to consider when looking for the best split at each node (if

max_features < n_features). See Glossary for details.

verbose : int, default=0
Controls the verbosity when fitting and predicting.

warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble,
otherwise, just fit a whole new forest. See the Glossary.

class_weight : {“balanced”, "balanced_subsample”}, dict or list of dicts, default=None
Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to
have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns

of y.

14

o Repository ® we Goovle™

Machine Learning Repository View ALL Data Sets

Center for Machine | eaming and Intelligent Systems

Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if you have any issues, questions, or concerns. Click here to try out the new site.

Wine Quality Data Set

Download: Data Folder, Data Set Description

Abstract: Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine guality based on physicochemical tests (see [Cortez et al., 2009], [Web Link]).

Attribute Information:

For more information, read [Cortez et al_, 2009].
Input variables (based on physicochemical tests):
1 - fixed acidity

2 - volatile acidity

3 - citric acid

4 - residual sugar

5 - chlorides

6 - free sulfur dioxide

[- total sulfur dioxide

& - density

9-pH

10 - sulphates

11 - alcohol

Output vanable (based on sensory data):

12 - quality (score between 0 and 10)

15

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

dfz pd.read csv('C://Users/fuser//Google Drive//academic//code//data//WINE//winequality-red.csv')

df.head()

fixed acidity wvolatile acidity citric acid residual sugar

V] T4 .70 0.00 1.9
1 7.8 0.88 0.00 2.6
2 7.8 .76 0.04 2.3
3 1.2 0.28 0.56 1.9
4 T4 Q.70 0.00 1.9

df.describe().T

count mean std min

fixed acidity 1595.0 8318637 17410986 450000
volatile acidity 1599.0 0527821 0.172060 0.12000
citricacid 15%8.0 0.270976 0.194801 0.00000

residual sugar 1399.0 2538806 1409928 0.90000
chlorides 1598.0 0.087467 0.047065 0.01200

free sulfur dioxide 1593.0 15874922 10460157 1.00000
total sulfur dioxide 1398.0 48467792 322.893324 6.00000
density 1599.0 0.996747 0.001887 0.99007

pH 1399.0 3311113 0.154386 2.74000

sulphates 1599.0 0.658149 0.169507 0.33000

alcohol 1599.0 10422933 1.063668 840000

quality 1593.0 5636023 0.807569 3.00000

chlorides free sulfur dioxide total sulfur dioxide

0.076
0.098
0.092
0.075

0.076

25%
7.1000
0.3900
0.0900
1.9000
0.0700
7.0000

22.0000
0.9956
3.2100
0.5500
9.5000

5.0000

50%
7.%0000
0.52000
0.26000
2.20000
0.07900

14.00000
38.00000
0.99675
3.31000
0.62000
10.20000

6.00000

11.0
25.0
15.0

17.0

75%
9.200000
0.540000
0.420000
2.600000
0.090000

21.000000
562.000000
0.997835
3.400000
0.730000
11.100000

6.000000

max

15.90000

1.58000

1.00000

15.50000

0.61100

72.00000

288.00000

1.00369

4.01000

2.00000

14.50000

8.00000

34.0

67.0

54.0

60.0

4.0

density
0.9978
0.9968
0.9970
0.9980

0.9978

pH
3.51
3.20
3.26
3.16

3.51

sulphates alcohol

0.56

0.68

0.65

0.58

0.56

9.4

9.8

9.8

9.8

9.4

quality
5

5

16

df.drop(columns = "'quality"')
df["quality']

from sklearn.model selection impert train_test split
X _train, X test, y _train, y_test = train_test split(x,y,test size=8.2)

from sklearn.ensemble import RandomForestRegressor
RF_reg = RandomForestRegressor(n_estimators=20)
RF_reg.fit(X_ train,y _train)

év RandomForestRegressor

éRﬂndDmFDPEStREgPESSGP(n_EStimatDP5=2@}é

y_pred reg = RF_reg.predict(X_ test)

errors = np.square(y pred reg - y_test)
print(np.mean(errors))

©.34962499559595996 v\\\\\\\\\\\\~

Mean Squared Error (MSE)

17

max_depth=3]

from sklearn.ensemble import RandomForestRegregses
RF_reg = RandDmFDrestﬁegPESSDP{n_e5timator5:1@1§

RF_reg.fit(X train,y train)

ér RandomForestRegressor

éRandDmFDrestRegre55ﬂr{max_depth=3, n_e5timatnr5=2@)§

v_pred reg = RF_reg.predict(X_test)

errors = np.square(y pred reg - y test)
print(np.mean(errors))

©.475532343553433

from sklearn.ensemble impert RandomForestRegressor

RF_reg = RandomForestRegressor(n_estimators=2@fmin_samples split=4

RF_reg.fit(X train,y train)

ér RandomForestRegressor

gRandDmFDPEStREEPE5SGP{min_SﬂmDIES_Split:ﬂ, ﬂ_e5timatDP5:29}§

y_pred reg = RF_reg.predict(X test)

errors = np.square(y _pred reg - y test)
print{np.mean(errors))

8.331342720854344016

18

from sklearn.ensemble impeort RandomForestRegressor

RF_reg = RandomForestRegressorfn_estimators=58)

RF_reg.fit(X_train,y train)

év RandomForestRegressor

gRandDmFDPEStREgPESSDP(H_EStimatDP5=5@}é

y_pred reg = RF_reg.predict(X_test)

errors = np.square(y _pred reg - y test)
print{np.mean(errors))

8.3358625

19

Geometric Wavelets

Let Q' be achildof Qinatree 7

The Geometric Wavelet associated with Q'

Ve (X) = 19’ (X)(QQ (X) - QQ (X)) Hl//Q'Hp = HQQ - QQHLp(Q)
| | =ICc, -C,| Q]
Sorting: HQ/IQ1 , > Hl//QZ , > ngg : > Hl//Q Hz ‘ 0 QVOIume
M-term geometric wavelet sum el
@ ®

M &) (5) (8) @
f) = Zl/fgm ®) (9) 2 @ @® ®
m=1 (16) (17) (18) (19) (20)(21) (22) @) (2 ﬂnzsw 26).‘ @ >)

Geometric Wavelets

Let Q' be achildof Qinatree 7

The Geometric Wavelet associated with Q'

Ver (%)= 1oy (%) (Qer (%) = Qa (X)) lverll, =1Q0 = Qall. (g
. The
Sorting: > > > ... Maos
@1 2 HWQZ 2 Hw% 2 émi'c'shere
M-term geometric wavelet sum e il
e * 5 o T e

S’ P

M @
Sw (f) - Z Va, ® O mm o 6 @ @ /[
" @) B ® ®6 @@ @ PO @ @®

Geometric Wavelets

Let Q' be achildof Qinatree 7

The Geometric Wavelet associated with Q'
Vo (X) =1, (X)(QQ' (x)—Qq (X))’ lwal, = (,UQQ' (x)—Qaq (X)‘2 dx)

Other discrete options for the norm (aligned with standard approach):

Vel - [» (%(xi)—%(xi)f]

Xi EQ,

Hl//Q’Hz ~ ‘CQ' _CQ‘(#{Xi < Q’})l/z

Geometric Wavelets

If 7 constructed over QQ, then we define the ‘root” wavelet
Ve, (x):= 1, (X)QQO (x).

Under ‘mild’ conditions on 7, forany f e L,(€Q,)

f:ZWQ'(f)

L Q7

2048-term
piecewise linear
Geometric
Wavelet
approximation

2048-term
piecewise linear
Geometric
Wavelet
approximation

Lemma 1 For any partition Q = Q' U Q" denote

Vo=) [f (@) = CorP + Y |f (20) = Canl,

=1 x; €0

where Cqr, Con are defined in (3) and
W = | ||2 + [[var]l.

Then, the minimization (2) of Vo is equivalent to mazximization of Wq over all choices of
subdomains Q. Q. Q =Q"UQ" and constants Cqr. Can.

= 2~ Cqy _CQ‘(#{Xi < Q’})UZ

26

Denoting briefly for any domain O Kg = # {’1“_; € @} we have

> (fa)=Col =Vo)= B (flw) = Ca)* = 3 (f(@i) = Ca)*= 3 (f (#:) = Cor)’

=y =Y 2 €Y 2 €EQ
= 37 [(F (mi) = Ca)* = (£ () —)]+
x; €Y
“Information gain” of node Z [(f (i) — CQ)Q — (f (x3) — ngn)g]
x; €0
=2 (CQ! — CQ Z f Tz + Ky ((Q — CQ’)
2 €Y
CQH — CQ Z f —|— I‘LQH (CQ CEQZH)
T, e’

(Cﬂ-’ — CQ) IKQ"CQ-’ —+ Iig]r" (Cﬂ — (—Qr)
+2(Con — Co) KognCaon + Ko (C4 — Cay)
= Ko/ (Coy — Ca)? 4+ Kan (Con — Cg)*

= [l + llvarll3 = Wo.

27

Classification — unified functional approach

Typically, in classification problems, the input training set consists of
labeled data using L classes.

We transform to ‘functional’ setting: assign to each class the value of
the one-hot encoding of dimension L

The input data is in the form (x.C(x))e(R",R")

The mean in a domain E = 1 ZC’)eR"

U o#x el

Vector-valued wavelet Vo =(Eq —Eq)1y

Valy =B = Eql, () Q1

Decision tree classification inference

Incoming new data X € Qy, X =(X,...,X,)

—

f(x)=E,,
where,
(i) Xe,
(i) Q' e 7, isaleaf

*)

()=aro

Classification — standard approaches

From “Elements of Statistical Learning” Section 9.2.3: “If the target is a classification outcome
taking values 1, 2, . . . K, the only changes needed in the tree algorithm pertain to the criteria
for splitting nodes and pruning the tree.”

(1) Misclassification error — For any region Qe 7 let

._#{yiECf . x, € Q}
Por ™™ eqr

Let /(Q)=arg max P, - Then we look for a split Q'U Q" = Q, that minimizes

1- Po i +1- Pojary

With normalization

#ix, eV}
#ix, e Q}

#ix, e Q"}
#ix, e}

(I_Pg'.r[.fr])+ (l—pg._”g-])@ #{xf €Yy, El(Q’)}+#{x§ el 1y, El(Qﬂ)}

(11)

Classification — standard approaches

L
Gini index - > p,, (1 - pg;f) promotes the probabilities to be zero or one. So, we are
/=1

minimizing a split Q'UQ" = Q, for
L

L
Z Po (1 —Pa.) + Z Pao (1_ Pao) .
I=1

I=1
With normalization,

Classification — standard approaches

Entropy of a sequence — Assume we have a sequence of symbols

(4,4,B,B,B,C,A,C,B,D,E,B,C,E,E,...).

If we would like to compress the sequence, how many bits will we need? Information Theory
tells us the following: Let p, be the probability of the i-th symbol in the sequence. Then, a lower

bound (best possible) on the number of bits is:

H = _pr log, (P;)-
Examples |
p,=05p,=05=H=-2x0.5xlog,0.5=1
p,=09,p,=01=H = —(O.9log2 0.9+0.1log, O.l) =0.469
p, =094, p,=0.03, p, =0.03= H =0.387

(iii)

Classification — standard approaches

L
Cross entropy - Entropy (Q) = —Z Pa,; log (pm) : we are looking for a “compact
=

17

representation of the classes

With normalizations

#ix, eV} .

#ix, Q" .
#ix, € Q)

t Q").
P ey niropy (€2)

ntropy (Q') +

Information gain

Entropy (Q2) - (fix €]

#{x, €Q}

H#ix, e}
#ix, €Q}

Entropy (') + Entropy (Q")J.

Should be compared with maximizing wavelet-based information gain

Qﬂ'

r N ~o2
Qf+|Ex - E, “m)

ol el ~Ja - Eal] .

Wavelet decomposition of a RF

Create a wavelet decomposition of each tree in the random forest

fo=> w, 1<j<.

Qe?]-
A wavelet representation of the entire random forest

ZW 2 Va(X)

j=1 QGT

Assuming for simplicity, w, =1/J, 1< J<J, order the wavelets of the RF

> ...

Wal, =lve.

2

The M-term approximation of a random forestis - 1Y
fy = _Zl/jQ

Automatic selection of M using a validation set
o]

MSE :=% i (F(x)-%)

045

Validation set — held out subset,
not used for training the RF, only
used to optimize the hyper-

parameter M I Estimate for optimal M

043

MSE

Our goal — Generalization! To
succeed on the unseen testing
data

04z -

I | L I |
200 1000 1500 2000 2500 1000
number of wavelets in M term

Figure 3: ‘Wine Quality’ dataset - Numeric computation of M for optimal regression.

Table 3: Performance comparison on the “Wine Quality”

Algorithm MSE
Biau08 0.53
Biaul2 0.59
Biaul2+T 0.57
Biaul2+S 0.57
Denil 0.48
Denil+F 0.48
Denil+S 0.41
Breiman 0.4
Breiman-+NB| 0.39
Wavelets 0.36

36

1.5

051

05

-1.56

-2

(a) Original set (b) Set with amplified mis-labeling

Figure 12: ‘Spirals’ dataset (Spiral dataset)

Wavelet error RF error Pruned RF error

Original spiral set | 12.2+0.9% | 1444+ 1.1% 15.9 + 0.8%

Set with amplified | 13.9+1.2% | 17.8 +£1.3% 22.7 +1.6%
mis-labeling

37

Feature (Variable) Importance - Linear Correlation

We have data x, =(x,.....x,,).y, . We want to understand the correlation between two features

1<k# j<n,orafeature £ and the response variable y .

Feature mean Uy = LS x.,, Feature STD o, = LZ(:@ . ;sk)z :
#I ie] : # iel :
We then compute the correlation coefficient
1
E (x;f:."l: _J‘uﬁr)(xi:j _f,’{j)
1< iel <1
C’}G}-

- If x,, = x , for each i, we obviously get perfect correlation of 1.

- Application — preprocessing step of pruning out highly correlated features. This
potentially will also improve the tree-based feature importance algorithms.

- Application — preprocessing step of pruning out features with low correlation to outcome.

- Application — simplest form of feature importance algorithm. Sort the features based on
absolute value of correlation with response variable.

38

Tree-based feature importance

Assuming partitions are along main axes — each partition is associated
with a specific feature.

We sum up the “information gains” associated with nodes of each
feature.

The features are ordered according to their gain contribution.

Example: if no partition at a certain feature > Does not have impact
on outcome -2 not important at all.

The differences between methods: what is the form of “gain” used?

We will see a mathematically justified wavelet-based method.

Wavelet based feature importance — Wine quality

fixed acidity

citric acid

residual sugar
density

free sulfur dioxide
Chloride

ph

total sulfur dioxide
Sulphates

volatile acidity

Alcohol

0 20 40 60 g0 100 120 140
wavelets norm

(a) Wavelet-based feature importance histogram
40

Wavelet based feature importance — Wine quality

*

0.65 ¥

* *
- ¥ *
* ¥ . R
£
né - *;* * * * . 3§ *
* « ** * ¥ * +
& * * * *
2 5%‘1 #* et * o ok #* #*
Kok g E g TRy X *
e |- # * ok ¥ ¥ *
03 * 5‘# * * * ;f #*: %E*— 3 * ¥ *
#* # ¥ " T # e *
* * * * % g ¥ ¥k EFEE ¥ ERE a%-le*;gkﬂe
0.5 [~ * * ¥ 4 *ﬁ result with top 3 features (Alcohol, volatile acidity
and Sulphates)
* o e
045 | 1 | 1 T*- 1 |l | |
0 20 40 &0 80 100 120 140 160

indices of all 3 features combinations

(b) Error of RFs constructed over all possible 3 feature subsets

41

Dataset

Pima Indians Diabetes Database

Predict the onset of diabetes based on diagnostic measures

‘:,ﬁ_' UCI Machine Learning « updated 5 years ago (Version 1)

Context

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or
not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances

from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Content

The datasets consists of several medical predictor variables and one target variable, Outcome . Predictor variables includes the number of pregnancies the patient
has had, their BMI, insulin level, age, and so on.

H Pregnancies = H Glucose = # BloodPressure = # SkinThickness = # Insulin = H BMI = # DiabetesPedigree... = H# Age = # Outcome =
Number of times pregnant Plasma glucose Diastolic blood pressure Triceps skin fold 2-Hour serum insulin (mu Body mass index (weight Diabetes pedigree Age (years) Class variable (0 or 1) 268
concentration a 2 hours in {mm Hg) thickness (mm) U/ml) in kg/(height in m)*2) function of 768 are 1, the athers

an oral glucose tolerance are 0

test

h. B AL 4k

42

Feature importance — Pima Indians Diabetes

May the best model win:

(i) Leteach algorithm
create an ordering of
feature importance,

(ii) Let each algorithm
build a classification
model using only the
first K important
features,

(iii) Compare accuracy of
models.

Accuracy Error

0.36

0.34

0.32

0.3

0.28

0.26

0.24

Permutation
Info Gain
Wavelets

4 o

features

43

The wavelet-based VI is derived by imposing a restriction on the adaptive re-ordering
of the wavelet components (11), such that they must appear in ‘feature related blocks’. To
make this precise, let {x € R", f (z)} be a dataset and let f represent the RF decomposition,

as in (8). We evaluate the importance of the i-th feature by

J
1 o :
ST = N SJ SJ lvally, t=1....,n, (20)

j=1 QeT;NV;

where, 7 > 0 and V; is the set of child domains formed by partitioning their parent domain
along the ith variable. This allows us to score the variables, using the ordering 57

S, = . Recall that our wavelet-based approach transtorms classification problems into

44

It is crucial to observe that from an approximation theoretical perspective, the more

suitable choice in (20) is 7 = 1, since with this choice, the ordering is related to ordering

the variables by the approximation error of their corresponding wavelet subset

J J
: ~ 1 | _ 1 |
N <;<n f — j E E Q) = I <i<n j ;) ;) ; J ()

j=1 QeT;nV; k#i j=1 QeT;NVy 9

J
1
< nlinl"‘_:iiﬂ-j y: y: y: [valls

ki j=1 QeT;NV;
. 1
= minj<i<p Z S
ki
_ Sl . _ Sl
— f"i' Ill(]-Xl E-Eg-n_ 7 -

1<k<n

What is interesting is that. in regression problems, when using piecewise constant approxi-
mation in (1),(4), the VI score (20) with 7 = 2, is in fact exactly as in (Louppe et. al. 2013)

when variance is used as the impurity measure. To see this, for any dataset {x € R", f (z)}

45

Further to the choice of 7 = 1 over 7 = 2 in (20), the novelty of the wavelet-based VI
approach is targeted at difficult noisy datasets. In these cases, one should compute VI at
various degrees of approximation, using only subsets of ‘significant’ nodes, by thresholding

out wavelet components with norm below some ¢ > 0

J
Si(e) =) > [dally- (22)

i=1 QeT;NV;, [[val>e

46

SVM-based RF (binary classification)

One can use linear SVM subdivisions at each node of the trees
This gives anisotropic partitions into convex domains
All of the theory is supported for this case, such as wavelet

decomposition of the anisotropic RF
Examples on validation sets...

ozone level detection

—

IWF — 0.0565 0.24
AWF — 0.055

T — ve—

Accuracy erro
o o o
8 8 B
T T T
Accuracy error
T T T T

phoneme

—=IWF=0.1
AWF -0.087

2000 4000 6000 8000 10000 12000 0
of wavelets

Accuracy error

0.265

0.26

0.255

0.25

0.245

0.24

0.235

0.23

0.225

1

SVM-based RF (binary classification)

L

[

pima-indians-diabetes

— IWF -0.245
—— AWF-0.223

1 1 1 1 1 1 1 1

02 04 06 08 1 1.2 34 %Ee: “1iB 2 22
of wavelets % 104

Accuracy error

o

015§
0.14 ¢
013}
0121
011

o ©
o —

o
fo]
@

0.07
0.06

0.05

spambase

— IWF-0.056
——— AWF-0.049

""\J‘.uv‘_‘r«. —
—

1 1 1 1 L 1 1
0 2000 4000 B0OO0 8000 10000 12000 14000 16000
of wavelets

Figure 17 — Graphic comparison of AWF and IWF for a few selected UCI datasets

Forest wavelet Sparsity

For simplicity, assume W, =7 1< <.

1z
1 r
/‘/T(f,f)izj(gguwg pj

M(f,f)—)%#{ﬂef:uwgup;tO}, r—0

P - Norm for approximation, typically P = 2

Tree Besov Smoothness

Qe7

o= S o))

a>0,r>1 1lr=a+l/p.

Compare with classical Besov semi-norm

\f\B,w[> (\Q\“mf,ﬂ)f)fjm

Q Dyadic cube

Forest Besov Smoothness

1 3 T 1z
[l :ZFLZ f 6;“(7,))

a>0, VYr=a+lp.

Besov index (for fixed p)
sup{a : ‘f‘@”(f) <oo}

Theorem m B NT(¢ ,f)

520(7)

Jackson-type Theorem

Recall the ordering

; ZHWQZ

Hwﬂl : > oo

and the M-term wavelet approximation
. 1M
Ty = jz%m
m=1

Theorem Jackson estimate for M-term wavelet forest approximation

(1)), <oM

B (F)

a>0, lr=a+l/p.

A modern recipe from the old Approximation Theory
cook-book

* Assume we have samples of a function f: [O,l]n - R"

* Construct a piecewise constant approximation using a Random Forest.
* Create a Wavelet decomposition of the Random Forest.

* Numeric algorithm to estimate minimal 7~ for which

1/t
1 r
V(1) =3 Sl <

* The weak type smoothness of the function is estimated as

a*zl—;, O<7 <?2.

*

T

53

Glimpse forward...analysis of deep learning on the

MNIST dataset

1.2

0.8

0.6

0.4

1 i
B

Input Layer 1 Layer 2 Layer 3 Logits

Fig. 5. Smoothness analysis of DL layers representations of MNIST

1.2

54

	Slide 1: Mathematical foundations of Machine Learning 2024 – lesson 4
	Slide 2: Random Forest
	Slide 3
	Slide 4: Function space representation
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Feature importance – Pima Indians Diabetes
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

