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Basic Outline

● Introduction
● 1st Section - Compute Facilities:

○ AWS - Linux Image
○ Jupyter Notebook/Lab
○ Python and package Management: pip, Conda
○ Git – downloading open source projects

● 2nd Section - Classic Machine Learning and Tools
○ NumPy, Pandas, SciPy, etc..
○ Sklearn – Classifiers, Regressors, Feature Importance
○ Wavelet Forest  + xgboost

● 3rd Section – Sparsity Probe, Neural Collapse and Beyond
○ Deep Learning Frameworks:

○ Pytorch + torchvision
○ Pytorch Lightning
○ MLOps - Weights and Biases
○ Transformers - HuggingFace

o Our code
○ SparsityProbe - using Index vs. Norms(with constant \alpha)
○ Geometric Wavelet Decomposition
○ NeuralCollapse + SVSL



Introduction



Machine Learning

https://www.altoros.com/blog/the-challenges-of-operating-a-machine-learning-model/
https://www.knowledgehut.com/blog/data-science/data-science-venn-diagram

https://www.altoros.com/blog/the-challenges-of-operating-a-machine-learning-model/


Machine Learning Pipelines 

https://www.altoros.com/blog/the-challenges-of-operating-a-machine-learning-model/





Why GPU? Why PyTorch? 

https://developer.nvidia.com/deep-learning-frameworks
https://arxiv.org/pdf/1810.12210.pdf

https://developer.nvidia.com/deep-learning-frameworks


Course Projects

● Ability to use course knowledge and build something hands-on

● Get into ML/DL
● See Data-Science from a mathematical perspective
● Try to understand the inner workings of modern models!

● Compute resources
● Support from Yuval, Ido, Shai 



Compute Resources



● Instances Panel
● AMIs -> Launch instance from AMI -> Course Image

○ For high compute resources (with GPU) g4dn.2xlarge is great/ smaller machines 
can also work

○ Instance Details: https://aws.amazon.com/ec2/instance-types/ (GPU is under 
‘Accelerated Computing’)

○ Starting/Stopping Machine - Remember to stop machine when not using it!

Setting up AWS image

https://aws.amazon.com/ec2/instance-types/


● Windows 
○ MobaXTerm - https://mobaxterm.mobatek.net/

● Mac 
○ iterm - https://iterm2.com/
○ Regular terminal

● Linux
○ terminal should do the job ☺

Using a terminal – recommended software

https://mobaxterm.mobatek.net/
https://iterm2.com/


● Setting up ssh - how to connect: https://www.youtube.com/watch?v=50PMYG_l0Us
○ Download key-pair
○ ssh-keygen -t dsa #(will make folder ~/.ssh)
○ mv ~/Downloads/<key-pair> to ~/.ssh
○ cd ~/.ssh
○ chmod 400 ~/.ssh/<key-pair>
○ ssh -i ~/.ssh/<key-pair> <username>@<Public IPv4 address>
○ ssh -i ~/.ssh/<key-pair> <username>@<Public IPv4 address> -L <local_port>:localhost:8888

■ E.g.  ssh -i ~/.ssh/ido_key_pair.pem ubuntu@54.198.203.51 -L 8892:localhost:8888

● Conda Enviorment – all of your python packages are in your conda env
○ Download key-pair
○ Activate conda enviorment - source activate <conda_env_name>

■ We use: pytorch_p38
○ Check conda environments - conda env list
○ Check installed packages – conda list
○ Check installed packages for pip – pip list

https://docs.conda.io/projects/conda/en/latest/
https://pip.pypa.io/en/stable/

Setting up AWS image

https://www.youtube.com/watch?v=50PMYG_l0Us
https://docs.conda.io/projects/conda/en/latest/


○ python – make sure we’re on python 3.8
○ import torch
○ import SparsityProbe
○ torch.cuda.is_available() - for GPU users

● Check the following folders exist
○ /home/ubuntu/projects/MFOML_CourseExamples
○ /home/ubuntu/projects/SparsityProbe

Sanity Checks



● Activating Jupyter Lab
○ source activate <conda_env_name>
○ Sanity Check – 

■ python
■ import torch; import SparistyProbe
■ exit()

○ cd ~/.ssh
○ jupyter-lab
○ Copy http://localhost:<your_forwarding_port>/lab?token=<token> and put in 

browser – you should see your aws machine

● Jupyter-Lab is very simple to use
○ Using terminal - remember to activate your environment if you want your thing to 

run ☺
○ New notebook should already be using your enviorment. Each notebook you can:

■ Run python code
■ Run bash commands

Using Jupyter-Lab



Classic ML



● Basic Jupyter Functionalities
○ Loading data example – torchvision
○ Plotting with plotly
○ Autograd - 

https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks

● Example – Wine Dataset
○ Loading data with pandas
○ Training basic ML models on data

■ Wavelet Forest
■ DecisionTreeRegressor
■ XGBRegressor
■ RandomForestRegressor

In Notebook – workshop_examples.ipynb

https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks


ML vs. DL
● Good separability in input feature space → ML

● All successful Machine Learning algorithms look for 
this geometry:

○ Support Vector Machines, Random Forest, Gradient Boosting, etc.

● If not, can we transform to a better feature space 
through feature engineering/deep learning (CNN, 
Resnets, Transformers etc)?

[1] UMAP of trained ConvNet on MNIST Dataset - Ben-Shaul, I. and Dekel, S., “Sparsity-Probe: Analysis tool for Deep Learning Models”, <i>arXiv e-prints</i>, 2021.
[2] F. Chollet, Deep Learning with Python, Manning, Nov. 2017.

MNIST DATASET

Input Layer Intermediate Layer Output Layer



In the functional setting we are given a function

In applications, point values (or even “density”)

We apply recursive subdivision of the data

Decision Trees

 

 

 

  

    



 

Piecewise constants

 
 

Decision Trees

 

 

Wavelet decompositions of Random Forests – O. Elisha, S. Dekel



 

Decision Tree Inference



Random Forest

 



Geometric Wavelet

 

Wavelet decompositions of Random Forests – O. Elisha, S. Dekel



Variable/Feature Importance



Deep Learning Frameworks



● Very easy to use, and large community, constant updating, easily dynamic
● Torch “tensor”

PyTorch Basics



Creating a network



Pytorch Datasets:

● Classic ML datasets
● https://pytorch.org/vision/stable/datasets.html
● https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
● Implement two functions: def __len__() and def __getitem__(idx)

https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html


Basic PyTorch Building Blocks:

dataset

validation

optimizertrain_loader
preprocess and 
batch Run model, feed into

Backprop + SGD step

Run on Validation set, log, save

”Epoch”

We’ll go over the code at 
/home/ubuntu/projects/MFOML_CourseExamples/VisionSparsityProbeExperiments

/train/train.py and sparsity_analyzer.py



Wavelet Sparsity

 

Michael Elad. 2010. <i>Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing</i> (1st. ed.). Springer Publishing 
Company, Incorporated.



Tree Besov Smoothness

 



Forest Besov Smoothness

 

[1] Ben-Shaul, I. and Dekel, S., “Sparsity-Probe: Analysis tool for Deep Learning Models”, <i>arXiv e-prints</i>, 2021.
[2] Elisha O. and Dekel S., "Wavelet decompositions of Random Forests - smoothness analysis, sparse approximation and applications", Journal of Machine Learning Research, 2016



 

 



 

Approximation high-dim smoothness from sparse samples 

[1] Ben-Shaul, I. and Dekel, S., “Sparsity-Probe: Analysis tool for Deep Learning Models”, <i>arXiv e-prints</i>, 2021.
[2] Elisha O. and Dekel S., "Wavelet decompositions of Random Forests - smoothness analysis, sparse approximation and applications", Journal of Machine Learning Research, 2016



Example – Train + SparsityProbe on MNIST1D

cd /home/ubuntu/projects/MFOML_CourseExamples/VisionSparsityProbeExperiments
python train/train.py --env_name 'mnist_1D_Conv_env' --epochs 85 
--save_epochs --lr 0.01



HuggingFace

● Models
○ Example GPT2- https://huggingface.co/gpt2

● Datasets
● Spaces
● Compatibility with: PyTorch, TensorFlow, JAX, keras, etc..



Transformers in 5 minutes

Great beginner guide - https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Vision Transformers in 1 minute

[1]Dosovitskiy, A., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, <i>arXiv e-prints</i>, 2020.



Language Models – PreTraining/ Self-Supervised Learning



Self-Supervised Learning in Vision

[1]Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S., “Barlow Twins: Self-Supervised Learning via Redundancy Reduction”, <i>arXiv 
e-prints</i>, 2021.



HuggingFace – Sequence Classification

● https://huggingface.co/docs/transformers/training

https://huggingface.co/docs/transformers/training


Example – Train Sequence-Classification with

cd /home/ubuntu/projects/MFOML_CourseExamples/NLPSparsityProbeExperiments
python train_glue_without_trainer.py --model_name_or_path bert-base-cased --task_name 
cola --num_train_epochs 3        #--use_norms



Example:  ResNet18 trained on CIFAR10

Interpolation Threshold (IT): The point at which Training Error =0

Terminal Phase of Training (TPT)[1]: Regime after the Interpolation Threshold

Interpolation Threshold

Does not reach 0! 

IT: Training Error =0

[1] Papyan, V., Han, X.Y., & Donoho, D.L. (2020). Prevalence of neural collapse during the terminal phase of deep learning training. Proceedings of the National Academy of Sciences of the United States of America, 117, 24652 - 24663.
[2] Ben-Shaul, I., & Dekel, S. (2022). Nearest Class-Center Simplification through Intermediate Layers. ArXiv, abs/2201.08924.

TPT



 

Example - Neural Collapse

Simpex ETF
Linear Classifiers
Class Means
Last-Layer Features

Papyan, V., Han, X.Y., & Donoho, D.L. (2020). Prevalence of neural collapse during the terminal phase of deep learning training. Proceedings of the National Academy of Sciences of the United States of America, 117, 
24652 - 24663.



●  

Nearest Class Center Simplification

Ben-Shaul, I., & Dekel, S. (2022). Nearest Class-Center Simplification through Intermediate Layers. ArXiv, abs/2201.08924.



Nearest Class Center in Intermediate Layers

●  

 

 



NCC with Stochastic Variability-Simplification Loss (SVSL)

●  



 

NCC with Stochastic Variability-Simplification Loss (SVSL)

 
  

Ben-Shaul, I., & Dekel, S. (2022). Nearest Class-Center Simplification through Intermediate Layers. ArXiv, abs/2201.08924.



Neural Collapse Example – MNIST (debug mode)

cd NeuralCollapse/Vision/
● Running without SVSL (normal Cross Entropy Loss)

○ python neuralcollapse_run.py 0 0 False configs/MNIST_Resnet18.p

● Running with SVSL
○ python neuralcollapse_run.py 1e-5 4 True configs/MNIST_Resnet18.p



SP+NC Example Experiments

cd /home/ubuntu/projects/MFOML_CourseExamples/VisionSparsityProbeExperiments
python train/train.py --env_name 'mnist_1D_Conv_env' --epochs 85 --save_epochs --lr 0.01

cd /home/ubuntu/projects/MFOML_CourseExamples/NLPSparsityProbeExperiments
python train_glue_without_trainer.py --model_name_or_path bert-base-cased --task_name cola 
--num_train_epochs 3 --use_norms

cd NeuralCollapse/
python neuralcollapse_run.py 1e-5 4 True configs/MNIST_Resnet18.p



Extra Materials



Useful Commands and workflows

● Nvidia-smi
● pycharm, vscode, …

● Developing locally and rsync

● rsync –r my_folder ido@54.227.191.120:/home/ubuntu/projects/

● Remote debugging – available on most IDEs – can be a bit complicated

● pytorch-lightning



PyTorch Lightning
https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/


● Datasets
○ ML https://archive.ics.uci.edu/ml/datasets.html
○ DL 

■ Vision: https://pytorch.org/vision/stable/datasets.html
■ NLP: https://huggingface.co/docs/datasets/index

○ Kaggle https://www.kaggle.com/datasets
● Code

○ https://github.com/idobenshaul10/MFOML_CourseExamples
○ https://github.com/idobenshaul10/SparsityProbe/tree/course_version

Useful References

https://archive.ics.uci.edu/ml/datasets.html
https://pytorch.org/vision/stable/datasets.html
https://huggingface.co/docs/datasets/index
https://github.com/idobenshaul10/MFOML_CourseExamples
https://github.com/idobenshaul10/SparsityProbe/tree/course_version


Updating Sparsity Probe

If you wish to update the code for SparsityProbe package (for instance you 
wish to make it work in on a new modality/ different types of inputs) - this is 
how to update the package

cd /home/ubuntu/projects/SparsityProbe
python SparsityProbe/setup.py bdist_wheel > out.txt
pip install dist/SparsityProbe-1.0-py3-none-any.whl --force-reinstall



Radford, Alec et al. “Learning Transferable Visual Models From Natural Language Supervision.” ICML (2021).

Interesting Directions - CLIP NCC Ground Truth Match



Interesting Directions - CLIP NCC Ground Truth Match

Radford, Alec et al. “Learning Transferable Visual Models From Natural Language Supervision.” ICML (2021).



Contact:
● idobenshaul@mail.tau.ac.il

“Equations are just the boring part of mathematics. 
I attempt to see things in terms of geometry.” 

               Stephen Hawking

Conclusion


