Foundations of approximation theory: Assignment I

1. [Minkowski integral inequality] Prove that for $1 \le p < \infty$ and a measurable function $F(x,t): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$

$$\left(\int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} \left|F\left(x,t\right)\right| dx\right)^p dt\right)^{1/p} \leq \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} \left|F\left(x,t\right)\right|^p dt\right)^{1/p} dx.$$

Hints: for $1 <math>\left(\int_{\mathbb{R}^n} |F(x,t)| dx \right)^p = \left(\int_{\mathbb{R}^n} |F(x,t)| dx \right) \left(\int_{\mathbb{R}^n} |F(y,t)| dy \right)^{p-1}$, change order of integration of *t* and *x*, use Hölder.

2. Recall that a function $g \in L_1(\mathbb{R}^n)$ is the **distributional derivative** of $f \in L_1(\mathbb{R}^n)$, $g \coloneqq \partial^{\alpha} f$, $\alpha \in \mathbb{Z}_+^n$, if

$$\int_{\mathbb{R}^n} g\phi = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f\partial^{\alpha}\phi , \quad \forall \phi \in C_0^{\infty}(\mathbb{R}^n) .$$

Prove $H'(x) = \begin{cases} \overline{1, \quad -1 \le x < 0,} \\ -1, \quad 0 \le x \le 1, \\ 0, \quad else. \end{cases}$ where $H(x) \coloneqq \begin{cases} \overline{x+1, \quad -1 \le x < 0,} \\ 1-x, \quad 0 \le x \le 1, \\ 0, \quad else. \end{cases}$

3. [Convergence of Fourier series] Compute the Fourier coefficients $\hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$ for:

- a. f(x) = x,
- b. $f(x) = x^2$.

Recall that, by Parseval, the degree of approximation of the Fourier series is

$$E_{N}(f)_{2} := ||f - S_{N}f||_{2} = \left(\sum_{|k|>N} |\hat{f}(k)|^{2}\right)^{1/2}.$$

Estimate the error for the above two cases as a function of *N*. What is the reason for the qualitative difference in the rate of decay of the error (as $N \rightarrow \infty$) for these two examples?

4. [Partial Fourier series]

a. Let
$$f \in L_2[-\pi,\pi]$$
 be 2π -periodic, with $||f||_2 \le 1$. Is it true that $||S_N f||_2 \le 1$, $N \ge 0$?
b. Let $f \in L_{\infty}[-\pi,\pi]$ be 2π -periodic, with $||f||_{\infty} \le 1$. Is it true that $||S_N f||_{\infty} \le 1$, $N \ge 0$?

5. For $\phi \in L_2(\mathbb{R}^n)$, $[\hat{\phi}, \hat{\phi}](w) \coloneqq \sum_{k \in \mathbb{Z}^n} |\hat{\phi}(w + 2\pi k)|^2 \in L_2([-\pi, \pi]^n)$ is called the auto-correlation function. Prove that $\{\phi(\cdot - k)\}_{k \in \mathbb{Z}^n}$ are an orthonormal system iff $[\hat{\phi}, \hat{\phi}](w) = 1$, a. e.

Hint:
$$\langle \phi, \phi(\cdot + j) \rangle = (2\pi)^{-n} \langle \phi^{\hat{}}, (\phi(\cdot + j))^{\hat{}} \rangle = \dots$$
 the Fourier coefficients of $[\hat{\phi}, \hat{\phi}]$.

- 6. Let $f(x) := \sum_{m=1}^{M} c_m \mathbf{1}_{[2m,2m+1]}(x)$. Compute the modulus $\omega_1(f,t)_p$, for all 0 < t < 1/2, and 0 .
- 7. Prove the following equality for any $N \ge 1$, $x, h \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$,

$$\Delta_{Nh}^{r}(f,x) = \sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \Delta_{h}^{r}(f,x+k_{1}h+\ldots+k_{r}h).$$

Hint: recall we proved in class for r = 1. Now apply induction on r. Make sure the notations are correct.

8. Recall that we proved in class for $g \in C^r(\mathbb{R}) \cap W_p^r(\mathbb{R}), 1 \le p \le \infty$, that

$$\omega_r(g,t)_{L_p(\Omega)} \leq C(r,n)t^r |g|_{W_p^r(\Omega)}, \qquad \forall t > 0.$$

Complete the proof for a general $g \in W_p^r(\mathbb{R})$, $1 \le p < \infty$ by using a 'density' argument, i.e. a sequence of functions

$$\{g_k\} \subset C^r(\mathbb{R}) \cap W_p^r(\mathbb{R}), \qquad \|g_k - g\|_{W_p^r(\mathbb{R})} \underset{k \to \infty}{\longrightarrow} 0.$$