
Foundations of approximation theory: Assignment I 
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3. [Convergence of Fourier series] Compute the Fourier coefficients ( ) ( )
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Recall that, by Parseval, the degree of approximation of the Fourier series is  
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Estimate the error for the above two cases as a function of N . What is the reason for the qualitative difference 

in the rate of decay of the error (as N → ) for these two examples? 

4. [Partial Fourier series] 
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7. Prove the following equality for any 1N  , , nx h , : nf → ,    

( ) ( )
1

1 1

1

0 0

, ,
r

N N
r r

Nh h r

k k

f x f x k h k h
− −

= =

 =  + + +  . 

Hint: recall we proved in class for 1r = . Now apply induction on r . Make sure the notations are correct. 
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