Foundations of approximation theory: Assignment I

1. [Minkowski integral inequality] Prove that for $1 \leq p<\infty$ and a measurable function $F(x, t): \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\left(\int_{\mathbb{R}^{m}}\left(\int_{\mathbb{R}^{n}}|F(x, t)| d x\right)^{p} d t\right)^{1 / p} \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{m}}|F(x, t)|^{p} d t\right)^{1 / p} d x
$$

Hints: for $1<p<\infty\left(\int_{\mathbb{R}^{n}}|F(x, t)| d x\right)^{p}=\left(\int_{\mathbb{R}^{n}}|F(x, t)| d x\right)\left(\int_{\mathbb{R}^{n}}|F(y, t)| d y\right)^{p-1}$, change order of integration of t and x, use Hölder.
2. Recall that a function $g \in L_{1}\left(\mathbb{R}^{n}\right)$ is the distributional derivative of $f \in L_{1}\left(\mathbb{R}^{n}\right), g:=\partial^{\alpha} f, \alpha \in \mathbb{Z}_{+}^{n}$, if

$$
\int_{\mathbb{R}^{n}} g \phi=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} f \partial^{\alpha} \phi, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) .
$$

Prove $H^{\prime}(x)=\left\{\begin{array}{cc}\overline{1,} & -1 \leq x<0, \\ -1, & 0 \leq x \leq 1, \\ 0, & \text { else. }\end{array} \quad\right.$ where $H(x):=\left\{\begin{array}{cc}\overline{x+1,} & -1 \leq x<0, \\ 1-x, & 0 \leq x \leq 1, \\ 0, & \text { else. }\end{array}\right.$
3. [Convergence of Fourier series] Compute the Fourier coefficients $\hat{f}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x$ for:
a. $\quad f(x)=x$,
b. $f(x)=x^{2}$.

Recall that, by Parseval, the degree of approximation of the Fourier series is

$$
E_{N}(f)_{2}:=\left\|f-S_{N} f\right\|_{2}=\left(\sum_{|k|>N}|\hat{f}(k)|^{2}\right)^{1 / 2} .
$$

Estimate the error for the above two cases as a function of N. What is the reason for the qualitative difference in the rate of decay of the error (as $N \rightarrow \infty$) for these two examples?
4. [Partial Fourier series]
a. Let $f \in L_{2}[-\pi, \pi]$ be 2π-periodic, with $\|f\|_{2} \leq 1$. Is it true that $\left\|S_{N} f\right\|_{2} \leq 1, N \geq 0$?
b. Let $f \in L_{\infty}[-\pi, \pi]$ be 2π-periodic, with $\|f\|_{\infty} \leq 1$. Is it true that $\left\|S_{N} f\right\|_{\infty} \leq 1, N \geq 0$?
5. For $\phi \in L_{2}\left(\mathbb{R}^{n}\right),[\hat{\phi}, \hat{\phi}](w):=\sum_{k \in \mathbb{Z}^{n}}|\hat{\phi}(w+2 \pi k)|^{2} \in L_{2}\left([-\pi, \pi]^{n}\right)$ is called the auto-correlation function.

Prove that $\{\phi(\cdot-k)\}_{k \in \mathbb{Z}^{n}}$ are an orthonormal system iff $[\hat{\phi}, \hat{\phi}](w)=1$, a. e.

Hint: $\langle\phi, \phi(\cdot+j)\rangle=(2 \pi)^{-n}\left\langle\phi^{\wedge},(\phi(\cdot+j))^{\wedge}\right\rangle=\ldots$ the Fourier coefficients of $[\hat{\phi}, \hat{\phi}]$.
6. Let $f(x):=\sum_{m=1}^{M} c_{m} \mathbf{1}_{[2 m, 2 m+1]}(x)$. Compute the modulus $\omega_{1}(f, t)_{p}$, for all $0<t<1 / 2$, and $0<p \leq \infty$.
7. Prove the following equality for any $N \geq 1, x, h \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\Delta_{N h}^{r}(f, x)=\sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \Delta_{h}^{r}\left(f, x+k_{1} h+\ldots+k_{r} h\right) .
$$

Hint: recall we proved in class for $r=1$. Now apply induction on r. Make sure the notations are correct.
8. Recall that we proved in class for $g \in C^{r}(\mathbb{R}) \cap W_{p}^{r}(\mathbb{R}), 1 \leq p \leq \infty$, that

$$
\omega_{r}(g, t)_{L_{p}(\Omega)} \leq C(r, n) t^{r}|g|_{W_{p}^{r}(\Omega)}, \quad \forall t>0
$$

Complete the proof for a general $g \in W_{p}^{r}(\mathbb{R}), 1 \leq p<\infty$ by using a 'density' argument, i.e a sequence of functions

$$
\left\{g_{k}\right\} \subset C^{r}(\mathbb{R}) \cap W_{p}^{r}(\mathbb{R}), \quad\left\|g_{k}-g\right\|_{W_{p}^{r}(\mathbb{R})} \underset{k \rightarrow \infty}{\rightarrow} 0
$$

