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Transformers and Typical Tasks

Transformers and Typical Tasks

Based on “Formal Algorithms for Transformers” [PH22]!
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Sequence Modelling (DTransformer)

Given a vocabulary V , let xn ∈ V∗ for n ∈ [Ndata] be a dataset of
sequences “sampled” from dist. P. The goal is to learn an estimate P̂
of the distribution P(x).

In practice, the distribution estimate is often decomposed via the
chain rule as P̂(x) = P̂θ(x[1]) · P̂θ(x[2] | x[1]) · · · P̂θ(x[ℓ] | x[1 : ℓ − 1]),
where θ consists of all neural network parameters to be learned.

The goal is to learn a distribution over a single token x[t] given its
preceding tokens x[1 : t − 1] as context.

Examples include language modelling, RL policy distillation, or music
generation.
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Sequence-to-sequence (seq2seq) prediction
(EDTransformer)

Given a vocabulary V and an i.i.d. dataset of sequence pairs
(zn, xn) ∼ P, where P is a distribution over V∗ × V∗, learn an estimate
of the conditional distribution P(x |z).

In practice, the conditional distribution estimate is often decomposed
as P̂(x |z) = P̂θ(x[1] | z) · P̂θ(x[2] | x[1], z) · · · P̂θ(x[ℓ] | x[1 : ℓ − 1], z).

Examples include translation (z = a sentence in English, x = the
same sentence in German), question answering (z = question, x =
the corresponding answer), text-to-speech (z = a piece of text, x = a
voice recording of someone reading the text).
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Classification (ETransformer).

Given a vocabulary V and a set of classes [NC], let
(xn, cn) ∈ V∗ × [NC] for n ∈ [Ndata] be an i.i.d. dataset of
sequence-class pairs sampled from P(x, c).

The goal in classification is to learn an estimate of the conditional
distribution P(c |x).

Examples include e.g. sentiment classification, spam filtering, toxicity
classification.
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Tokenization: How Text is Represented

In NLP, tokenization refers to how a piece of text such as “My
grandma makes the best apple pie.” is represented as a sequence of
vocabulary elements (called tokens).

Character-level tokenization. One possible choice is to let V be the
English alphabet (plus punctuation).

Word-level tokenization. V consists of all English words (plus
punctuation).

Subword tokenization. V is a set of commonly occurring word
segments like ‘cious’, ‘ing’, ‘pre’. Common words like ‘is ’ are often a
separate token, and single characters are also included in V to ensure
all words are expressible. E.g. [SHB15] used in GPT-2 [BMR+20].
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Final vocabulary and text representation

Given a choice of tokenization / vocabulary, each vocabulary element
is assigned a unique index in {1, 2, . . . ,NV − 3}.
A number of special tokens are then added to the vocabulary. The
number of special tokens varies, and here we will consider three:

mask token := NV − 2, used in masked language modelling;
bos token := NV − 1, used for representing the beginning of
sequence;
eos token := NV, used for representing the end of sequence.

The complete vocabulary has NV = |V | elements.

A piece of text is represented as a sequence of indices (called token
IDs) corresponding to its (sub)words, preceded by bos token and
followed by eos token.
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Notation

Let V denote a finite set, called a vocabulary, often identified with
[NV ] := {1, ...,NV }. This could be words or letters, but typically are
sub-words, called tokens.

Let x ≡ x[1 : ℓ] ≡ x[1]x[2] . . . x[ℓ] ∈ V∗ be a sequence of tokens, e.g.
a sentence or a paragraph or a document. Unlike in Python, we use
arrays starting from 1, and x[1 : ℓ] includes x[ℓ].

For a matrix M ∈ Rd×d′ , we write M[i, :] ∈ Rd′ for the ith row and
M[:, j] ∈ Rd for the j-th column.

The training data may naturally be a collection of (independent)
articles, but even then, some may exceed the maximal context length
ℓmax transformers can handle. In this case, an article is crudely
broken into shorter chunks of length ≤ ℓmax.
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Architectural Components

Architectural Components
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Token embedding

The token embedding learns to represent each vocabulary element as a
vector in Rde .

Algorithm Token embedding.
Input : v ∈ V � [NV], a token ID.
Output : e ∈ Rde , the vector representation of the token.
Parameter: We ∈ R

de×NV , the token embedding matrix.
1 return e = We [:, v]
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Positional embedding

The positional embedding(PE) learns to represent a token’s position in a
sequence as in Rde . E.g. the position of the 1st token in a sequence is
represented by a (learned) vector Wp[:, 1], the position of the 2nd token is
another (learned) vector Wp[:, 2], etc. Learned PE require that the input
sequence length is at most some fixed number ℓmax.

Algorithm Positional embedding.
Input : ℓ ∈ [ℓmax], position of a token in the sequence.
Output : ep ∈ R

de , the vector representation of the position.
Parameter: Wp ∈ R

de×ℓmax , the PE matrix.
2 return ep = Wp[:, ℓ]

The PE of a token is added to the token embedding to form a token’s initial
embedding. For the t-th token of a sequence x, the embedding is

e = We [:, x[t]] + Wp[:, t]. (1)
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Attention

Attention is the main part of transformers. It enables a neural network to
make use of contextual information for predicting the current token.
On a high level:

the token currently being predicted (destination) is mapped to a
query vector q ∈ Rdattn , and the tokens in the context (source) are
mapped to key vectors k t ∈ R

dattn and value vectors v t ∈ R
dvalue .

The inner products q⊺k t are interpreted as the degree to which token
(src.) t is important for predicting the current token (dst.) q – they are
used to derive a distribution over the context tokens, which is then
used to combine the value vectors.
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Attention
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Attention
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Attention
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Attention

Figure: Source
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Basic single-query attention.

Algorithm Basic Single-Query Attention

Input : e ∈ Rdin , vector representation of the current token.
Input : e t ∈ R

din , vector representations of context tokens t ∈ [T ].
Output : ṽ ∈ Rdout , vector representation of the token and context com-

bined.
Parameter: Wq,Wk ∈ R

dattn×din , the query and key linear projections.
Parameter: Wv ∈ R

dout×din , the value linear projection.
3 q ← Wqe;
4 ∀t : kt ← Wk et ;
5 ∀t : vt ← Wvet ;

6 ∀t : αt =
exp(q⊺kt/

√
dattn)∑

u∈[T ] exp(q⊺ku/
√

dattn)
;

7 return ṽ =
∑T

t=1 αtvt
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Additional Notation

It will be useful to define the softmax function for matrix arguments, as well
as a Mask matrix:

softmax(A)[tz, tx] :=
expA [tz, tx]∑
t expA [t , tx]

, (2)

Mask[tz, tx] =
{

1 for bidirectional attention
[[tz ≤ tx]] for unidirectional att.

(3)
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General Single-Headed Attention

Algorithm Ṽ ← Attention(X ,Z |Wqkv ,Mask)

/* Computes a single (masked) self- or cross-attention head. */

Input: X ∈ Rdx×ℓx ,Z ∈ Rdz×ℓz , vector representations of primary and context
sequence.

Output: Ṽ ∈ Rdout×ℓx , updated representations of tokens in X , folding in
information from tokens in Z .

8 Wqkv consisting of: Wq ∈ R
dattn×dx , Wk ∈ R

dattn×dz , Wv ∈ R
dout×dz , . Mask∈

{0, 1}ℓz×ℓx , ↑(3) ;
9 Q ← WqX [[Query ∈ Rdattn×ℓx ]] ;

10 K ← Wk Z [[Key ∈ Rdattn×ℓz ]] ;
11 V ← WvZ ; [[Value ∈ Rdout×ℓz ]] ;
12 S ← K⊺Q ; ∀tz, tx, if ¬Mask[tz, tx] then S[tz, tx]← −∞ ;
13 return Ṽ = V · softmax

(
S/
√

dattn
)
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Attention Variants

Bidirectional / unmasked self-attention. Given a sequence,
attention to each token, treating all tokens in the sequence as the
context. Algorithm 5, with Z = X and no masking (Mask ≡ 1).

Unidirectional / masked self-attention. Given a sequence, attention
to each token, treating all preceding tokens (including itself) as the
context. Future tokens are masked out, so this causal
auto-regressive version can be used for online prediction. Z = X
and Mask [tz, tx] := [[tz ≤ tx]]. For this Mask, the output Ṽ [:, 1 : t] only
depends on X [:, 1 : t], hence can be used to predict X [:, t + 1].

Cross-attention. Given two sequences (often in the context of a
sequence-to-sequence task), attention to each token of the primary
token sequence X , treating the second token sequence Z as the
context, with Mask ≡ 1. While the output Ṽ and input sequences X
have the same length ℓx, the context sequence Z can have different
length ℓz.
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Multi-Headed Attention

Algorithm Ṽ ← MHAttention(X ,Z |W,Mask)

/* Computes Multi-Head (masked) self- or cross- attention layer. */

Input: X ∈ Rdx×ℓx ,Z ∈ Rdz×ℓz

Output: Ṽ ∈ Rdout×ℓx , updated representations of tokens in X , with informa-
tion from tokens in Z .

14 for h ∈ [H],Wh
qkv consisting of do

15 Wh
q ∈ R

dattn×dx , Wh
k ∈ R

dattn×dz , Wh
v ∈ R

dmid×dz ;

16 Wo ∈ R
dout×Hdmid .

17 H, number of attention heads, Mask∈ {0, 1}ℓz×ℓx

18 for h ∈ [H] do
19 Yh ← Attention(X ,Z |Wh

qkv ,Mask)

20 Y ← [Y1;Y2; . . . ;YH] return Ṽ = WoY
21 return Ṽ = V · softmax

(
S/
√

dattn
)
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Layer Norm

Layer normalisation explicitly controls the mean and variance of individual
neural network activations; the pseudocode is given in Algorithm 6.

Algorithm ê ← layer norm(e|γ,β)

/* Normalizes layer activations e. */

Input : e ∈ Rde , neural network activations.
Output : ê ∈ Rde , normalized activations.
Parameter: γ,β ∈ Rde , element-wise scale and offset.

22 m ←
∑de

i=1 e[i]/de;
23 v ←

∑de
i=1(e[i] −m)2/de;

24 return ê = e−m√
v
⊙ γ+ β, where ⊙ denotes element-wise multiplication.
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Unembedding

The unembedding learns to convert a vector representation of a token and
its context into a distribution over the vocabulary elements

Algorithm Unembedding

Input : e ∈ Rde , a token encoding.
Output : p ∈ ∆(V), a probability distribution over the vocabulary.
Parameter: Wu ∈ R

NV×de , the unembedding matrix.
25 return p = softmax(Wue)
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Transformer Architectures

Transformer Architectures

We will go over three example architectures:

Encoder-Decoder Transformer (EDT) [VSP+17]

BERT (Encoder) [DCLT19]

GPT (Decoder) [BMR+20]
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EDT/ Sequence-to-sequence transformer

Intuition:

First, the context sequence is encoded using bidirectional multi-head
attention. The output of this ‘encoder’ part of the network is a vector
representation of each context token, taking into account the entire
context sequence.

Second, the primary sequence is encoded. Each token in the primary
sequence is allowed to use information from the encoded context
sequence, as well as primary sequence tokens that precede it.
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EDT - Architecture
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EDT - Example: T5, T5-FLAN

Figure: Left: T5 [RSR+19], Right: FLAN-T5 [CHL+22]
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EDT - Architecture

Ido Ben-Shaul (Tel-Aviv Uni, eBay) Basics of NLP and SSL June 10, 2023 28 / 71



EDT - Architecture
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EDT - Training
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EDT: Inference
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Encoder-only transformer: BERT

Intuition: BERT is a bidirectional transformer trained on the task of masked
language modelling. Given a piece of text with some tokens masked out,
the goal is to correctly recover the masked-out tokens. The original use of
BERT was to learn generally useful text representations, which could then
be adapted for various downstream NLP tasks. The masking is not
performed via the Mask parameter but differently: During training each
input token is replaced with probability pmask by a dummy token
mask token, and evaluation is based on the reconstruction probability of
these knocked-out tokens.
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Encoder-only transformer: BERT, architecture
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Encoder-only: Training
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BERT: Pretraining and Fine Tuning

Figure: [DCLT19]

Ido Ben-Shaul (Tel-Aviv Uni, eBay) Basics of NLP and SSL June 10, 2023 35 / 71



Classification using Encoder Models

Figure: Source
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Encoder-only: Clustering in intermediate layers

Figure: NCC mismatch for Sequence-Classification datasets: RTE, MRPC and
CoLA, using both vanilla (solid) and SVSL(dashed) losses. Top: train NCC
mismatch, Bottom: test NCC mismatch. We show only a subset of the
transformer blocks for clearness. The shaded pink background shows the TPT for
the vanilla loss experiment, and the blue for the SVSL. The background is shaded
purple at epochs when both experiments are in the TPT.
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Encoder-only: Clustering in intermediate layers

Figure: Left: Pretrained, Right: Finetuned [XQP+22]
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Decoder-only transformers: GPT

GPT-2 and GPT-3 are large language models developed by OpenAI.
They all have similar architectures and are trained by autoregressive
language modelling: Given an incomplete sentence or paragraph, the goal
is to predict the next token.
The main difference from BERT is that GPT use unidirectional attention
instead of bidirectional attention.
GPT-3 is identical except larger, and replaces dense attention in Line 6 by
sparse attention, i.e. each token only uses a subset of the full context.
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Decoder-only transformers: GPT - architecture
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Decoder-only transformers: GPT - training
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Decoder-only transformers: Inference
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Vision Transformer

Figure: [DBK+21]
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CLIP

Figure: [RKH+21]
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CLIP embeddings

Figure: [RKH+21], Blogpost
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Zero/One/Few Shot Learning

Figure: [BMR+20]
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Chain-of-Thought prompting

Figure: [WWS+22]
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Retrieval Augmented Generation
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State of GPT
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LIMA

Figure: LIMA: Less Is More for Alignment [ZLX+23]
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Self-Supervised Learning

Self-Supervised Learning (SSL)
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SSL Setting

How can we learn representations without labeling?

Trick: Define a proxy task to learn representations

Objective: Learn meaningful representations without labels.
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SimCLR

Figure: SimCLR: [CKNH20]

L(f) = −
1
B

B∑
i=1

(sim(Zi ,Z ′i )/τ)︸             ︷︷             ︸
Invariance

− log
∑
j,i

exp(sim(Zi ,Z ′j )/τ)︸                            ︷︷                            ︸
Regularization

,
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VICReg

Figure: VICReg: [BPL22]

L(f) = λs(Z ,Z ′)︸     ︷︷     ︸
Invariance

+ µ[v(Z) + v(Z ′)] + ν[c(Z) + c(Z ′)]︸                                         ︷︷                                         ︸
Regularization

, (4)
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Understanding SSL

Understanding SSL

Ido Ben-Shaul (Tel-Aviv Uni, eBay) Basics of NLP and SSL June 10, 2023 55 / 71



Clustering
Initialization

Sample

Original

Super

End of train

Figure: SSL training induced semantic clustering. UMAP of SSL
representations in different hierarchies. (top) Augmentations of five different
samples, each sample colored distinctly. (middle) Samples from five different
classes within the standard CIFAR-100 dataset. (bottom) Samples from five
different superclasses within the dataset. [BSSZG+23]
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1 10 100 1000

0.3

0.5

0.7

0.9

Hierarchy

Sample

Original

Super

Epoch

L
in

e
a
r
 A

c
c
u

r
a
c
y

1 10 100 1000

1

1.2

1.4

1.6

1.8

Hierarchy

Sample

Original

Super

Epoch

N
o
r
m

a
li

z
e
d

 L
in

e
a
r
 A

c
c
u

r
a
c
y

Figure: SSL algorithms cluster the data with respect to semantic targets.
The linear test accuracy rates, (left) non-normalized, (right) normalized by their
values at initialization. All experiments are conducted on CIFAR-100 with VICReg
training
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NCC
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Figure: SSL algorithms cluster the data with respect to semantic targets.
The normalized NCC train accuracy, computed by dividing the accuracy values by
their value at initialization.
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Intermediate Layers
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Figure: SSL efficiently learns semantic classes throughout intermediate
layers. The linear test accuracy of different layers of the model at various epochs
(left) With respect to the 100 original classes. (middle) With respect to the 20
superclasses. (right) The ratio between the superclass and the original classes.
All experiments are conducted on CIFAR-100 with VICReg training.

Ido Ben-Shaul (Tel-Aviv Uni, eBay) Basics of NLP and SSL June 10, 2023 59 / 71



Architecture Affects
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Figure: The influence of width and depth on learning semantic classes at
intermediate layers. (top) Linear test accuracy at different epochs for neural
networks of varying widths. (bottom) Linear test accuracy of neural networks with
different depths. (left) The performance is measured in relation to the original
classes. (right) The performance with respect to the superclasses.
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Loss Terms
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Figure: The role of the regularization term in SSL training. Each plot depicts
the regularization and invariance losses, along with the linear test accuracy,
throughout the training process of VICReg with µ = 5, 25, 100 respectively.
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semantic targets over random ones
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Figure: SSL continuously learns semantic targets over random ones. (left)
The linear test accuracy for targets with varying levels of randomness from the
last layers at different epochs. (middle) The linear test accuracy for targets with
varying levels of randomness for the trained model. (right) The ratios between
non-random and random targets for various clustering metrics. All experiments
are conducted on CIFAR-100 with VICReg training.
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Different Architectures
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Figure: SimCLR and VICReg have similar performance. (top) Linear test
accuracy in different training epochs, as a function of the intermediate layer, for
original classes and superclasses, from left to right resp. (bottom) (left) Linear
test accuracy in different training epochs (from dark to light) with respect to
different randomness levels. (right) Linear test accuracy in different intermediate
layers, at the end of training with respect to different randomness levels.
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Implicit Bias of Backbone
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Figure: The implicit bias of the backbone architecture on the learned
representations. (left) Linear test accuracy of an SSL-trained RES-5-250
network for extracting ResNet-18 and ViT random target functions with varying
degrees of randomness (x-axis) at different epochs (color-coded from dark to
bright). (right) Linear test accuracy of an SSL-trained RES-5-250 network for
extracting ResNet-18 and ViT random target functions with varying degrees of
randomness (x-axis) at different intermediate layers (color-coded from dark to
bright).
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