Mathematical Foundations of Machine Learning, Spring 2024: Assignment I

1. [30%] Let $f(x) := \sum_{m=1}^{M} c_m \mathbf{1}_{[2m,2m+1]}(x)$. Compute the modulus $\omega_1(f,t)_p$, for all 0 < t < 1/2, and 0 .

Remark: There are two cases: $0 , <math>p = \infty$.

2. [30%] Prove the following equality for any $N \ge 1$, $x, h \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$,

$$\Delta_{Nh}^{r}(f,x) = \sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \Delta_{h}^{r}(f,x+k_{1}h+\ldots+k_{r}h).$$

Hint: recall we proved in class for r = 1. Now apply induction on r. Make sure the notations are correct.

3. [30%] Let $f:[0,1]^n \to \mathbb{R}^L$ and let $\Omega \subseteq [0,1]^n$. Prove that minimizing the variance over partitions $\Omega' \cup \Omega'' = \Omega$,

$$V_{\Omega} \coloneqq \int_{\Omega'} \left| \vec{f}(x) - \vec{E}_{\Omega'} \right|_{l_2(\mathbb{R}^L)}^2 dx + \int_{\Omega'} \left| \vec{f}(x) - \vec{E}_{\Omega'} \right|_{l_2(\mathbb{R}^L)}^2 dx,$$

is equivalent to maximizing the wavelet norms

$$\|\psi_{\Omega'}\|^2 + \|\psi_{\Omega''}\|^2$$

where
$$\vec{E}_{\Omega'} = \frac{1}{|\Omega'|} \int_{\Omega'} \vec{f}(x) dx$$
, $||\psi_{\Omega'}||_2 = |\Omega'|^{1/2} |\vec{E}_{\Omega'} - \vec{E}_{\Omega}|_{l_2(\mathbb{R}^L)}$.

4. [10%] How would you speed up the training of a Random Forest composed of 5 trees using 20 parallel processors? Try to describe an optimal scenario where the 20 processors are fully utilized all the time.