Mathematical foundations of Machine Learning 2024 – lesson 2

Shai Dekel

Banach Spaces

Definition Banach space is a complete normed vector space B over a field $F = \{\mathbb{R}, \mathbb{C}\}$,

Vector space:
$$\exists 0 \in B$$
, $\forall f, g \in B$, $\alpha, \beta \in F \Rightarrow \alpha f + \beta g \in B$.

Norm:

i.
$$||f|| \ge 0$$
 and $||f|| = 0 \iff f = 0$.

ii.
$$f \in B$$
 only if $||f||_{p} < \infty$.

iii.
$$\|\alpha f\| = |\alpha| \|f\|, \ \forall \alpha \in F, \forall f \in B.$$

iv. Triangle inequality
$$||f + g|| \le ||f|| + ||g||$$
.

Complete: Every Cauchy sequence in B converges to an element of B.

Measure

In this course we only use the standard Lebesgue measure \leftrightarrow the volume of a (measurable) set.

Example:
$$\Omega = [0,2]^n \subset \mathbb{R}^n$$
, $\mu(\Omega) = |\Omega| = 2^n$.

We will need the notion of zero measure (volume). Example: a set of discrete points

Lp Spaces

$$\Omega \subseteq \mathbb{R}^n$$
 domain. Examples: $\Omega = [a, b] \subset \mathbb{R}$, $\Omega = [0, 1]^n \subset \mathbb{R}^n$, $\Omega = \mathbb{R}^n$.

$$||f||_{L_{p}(\Omega)} := \begin{cases} \left(\int_{\Omega} |f(x)|^{p} dx \right)^{1/p}, & 0$$

$$ess \sup_{x} |f(x)| := \sup_{A>0} \{A>0 : |\{x: |f(x)| \ge A\}| > 0\}.$$

For
$$1 \le p \le \infty$$
, $L_p(\Omega)$ are Banach spaces.

For $0 , <math>L_p(\Omega)$ are Quasi-Banach spaces (quasi-triangle inequality holds)

$$||f+g||_p^p \le ||f||_p^p + ||g||_p^p.$$

Theorem [Hölder] $1 \le p \le \infty$, $f \in L_p$, $g \in L_{p'}$

$$\left| \int_{\Omega} fg \right| \leq \int_{\Omega} |fg| = \|fg\|_{1} \leq \|f\|_{p} \|g\|_{p'} \qquad \frac{1}{p} + \frac{1}{p'} = 1.$$

Lemma Young's inequality for products,

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'}, \qquad \frac{1}{p} + \frac{1}{p'} = 1, \ \forall a, b \ge 0.$$

Proof of lemma The logarithmic function is concave. Therefore

$$\log\left(\frac{1}{p}a^{p} + \frac{1}{p'}b^{p'}\right) = \log\left(\frac{1}{p}a^{p} + \left(1 - \frac{1}{p}\right)b^{p'}\right)$$

$$\geq \frac{1}{p}\log\left(a^{p}\right) + \frac{1}{p'}\log\left(b^{p'}\right)$$

$$= \log\left(a\right) + \log\left(b\right) = \log\left(ab\right).$$

Since the logarithmic function is increasing, we are done (or we take exp on both sides).

Proof of theorem If $p = \infty$

$$\int_{S} |fg| \le ||f||_{\infty} \int_{S} |g| \le ||f||_{\infty} ||g||_{1}.$$

The proof is similar for p = 1. So, assume now $1 and <math>||f||_p = ||g||_{p'} = 1$. Integrating pointwise and applying Young's inequality almost everywhere, gives

$$\int_{\Omega} |f(x)g(x)| dx \le \int_{\Omega} \left(\frac{|f(x)|^p}{p} + \frac{|g(x)|^{p'}}{p'} \right) dx$$

$$= \frac{1}{p} \int_{\Omega} |f(x)|^p dx + \frac{1}{p'} \int_{\Omega} |g(x)|^{p'} dx$$

$$= \frac{1}{p} + \frac{1}{p'} = 1$$

Now assuming $f, g \neq 0$ (else, we are done)

$$\int_{\Omega} \frac{\left| f(x) \right|}{\left\| f \right\|_{p}} \frac{\left| g(x) \right|}{\left\| g \right\|_{p'}} dx \le 1 \Rightarrow \int_{\Omega} \left| fg \right| \le \left\| f \right\|_{p} \left\| g \right\|_{p'}$$

Theorem Minkowski for Lp spaces $1 \le p \le \infty$, $f, g \in L_p$, $\|f + g\|_p \le \|f\|_p + \|g\|_p.$

Proof for $1 (<math>p = 1, \infty$ is easier). W.l.g $f, g \ge 0$. We apply Hölder twice,

$$\int (f+g)^{p} = \int f(f+g)^{p-1} + \int g(f+g)^{p-1}$$

$$\leq (\|f\|_{p} + \|g\|_{p}) (\int (f+g)^{(p-1)p'})^{1/p'}$$

$$= (\|f\|_{p} + \|g\|_{p}) (\int (f+g)^{p})^{1-1/p}$$

$$= (\|f\|_{p} + \|g\|_{p}) (\int (f+g)^{p})^{1-1/p}$$

$$= (\|f\|_{p} + \|g\|_{p}) (\int (f+g)^{p})^{1-1/p}.$$

Theorem For 0 , we have

(i)
$$\left\|\sum_{k} f_{k}\right\|_{p}^{p} \leq \sum_{k} \left\|f_{k}\right\|_{p}^{p}.$$

(ii)
$$||f+g||_p \le 2^{1/p-1} (||f||_p + ||g||_p)$$
 or in general $||\sum_{k=1}^N f_k||_p \le N^{1/p-1} \sum_{j=1}^N ||f_k||_p$.

Proof The quasi-triangle inequality (ii) is derived from (i). Observe first

$$1 < r := \frac{1}{p} < \infty$$

$$\frac{1}{r} + \frac{1}{r'} = 1$$

$$\Rightarrow r' = \frac{1}{1 - p}$$

Then

$$\left\| \sum_{k=1}^{N} f_{k} \right\|_{p} \leq \left(\sum_{k=1}^{N} \left\| f_{k} \right\|_{p}^{p} \right)^{1/p} = \left(\sum_{k=1}^{N} 1 \cdot \left\| f_{k} \right\|_{p}^{p} \right)^{1/p} \leq \sum_{\substack{\text{Discrete} \\ \text{Holder}}} \left(\sum_{k=1}^{N} 1^{\frac{1}{1-p}} \right)^{(1-p)1/p} \left(\sum_{k=1}^{N} \left\| f_{k} \right\|_{p} \right) = N^{1/p-1} \sum_{k=1}^{N} \left\| f_{k} \right\|_{p}$$

To prove (i), we need the following lemma

Lemma I For $0 and any sequence of non-negative <math>a = \{a_k\}$,

$$\left(\sum_{k} a_{k}\right)^{p} \leq \sum_{k} a_{k}^{p}$$

Proof Observe that it is sufficient to prove $(a_1 + a_2)^p \le a_1^p + a_2^p$ and then apply induction.

To prove the inequality use $h(t) := t^p + 1 - (t+1)^p$ for $t \ge 0$. h(0) = 0 and $h'(t) = pt^{p-1} - p(t+1)^{p-1} \ge 0$.

Therefore, $h(t) \ge 0$, for $t \ge 0$. This gives $t^p + 1 \ge (t+1)^p$. Setting $t = a_1 / a_2$ gives

$$\left(\frac{a_1}{a_2}\right)^p + 1 \ge \left(\frac{a_1}{a_2} + 1\right)^p \implies a_1^p + a_2^p \ge \left(a_1 + a_2\right)^p.$$

Proof of Theorem (i): Simply apply the lemma pointwise for $x \in \Omega$ and then Tonelli's theorem for the exchange of integration and sum

$$\left\|\sum_{k} f_{k}\right\|^{p} \leq \int_{\Omega} \left(\sum_{k} \left|f_{k}(x)\right|\right)^{p} dx \leq \int_{\Omega} \left(\sum_{k} \left|f_{k}(x)\right|^{p}\right) dx = \sum_{k} \int_{\Omega} \left|f_{k}(x)\right|^{p} dx = \sum_{k} \left\|f_{k}\right\|_{p}^{p}.$$

Multivariate algebraic polynomials

We define $\Pi_{r-1}(\mathbb{R}^n)$: polynomials of degree r-1.

Let
$$\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_+^n$$
, $|\alpha| := \sum_{i=1}^n \alpha_i$.

Monomial
$$x^{\alpha} := \prod_{i=1}^{n} x_i^{\alpha_i}, x = (x_1, ..., x_n) \in \mathbb{R}^n$$
.

Polynomial $P \in \Pi_{r-1}$

$$P(x) = \sum_{|\alpha| < r} a_{\alpha} x^{\alpha}$$

Spaces of smooth functions

Multivariate derivatives: A partial derivative of order r

$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n, \quad D^{\alpha} f = \frac{\partial^r f}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}, \quad |\alpha| := \sum_{i=1}^n \alpha_i = r.$$

Definition $C^r(\Omega)$: The space of all continuously differentiable functions of order r in the classical sense.

$$\left\|f
ight\|_{C^{r}(\Omega)}\coloneqq \sum_{|lpha|\leqslant r} \left\|D^lpha f
ight\|_{L_\infty(\Omega)},$$

The *semi-norm*

$$\left\|f\right\|_{C^{r}(\Omega)}\coloneqq\sum_{\left|lpha
ight|=r}\left\|D^{lpha}f
ight\|_{\infty}$$

Examples $C^r(\mathbb{R})$ Then $||f||_{C^r(\mathbb{R})} = \sum_{k=0}^r ||f^{(k)}||_{\infty}$ is a norm $|f|_{C^r(\mathbb{R})} = ||f^{(r)}||_{\infty}$ is a semi-norm with the polynomials of degree r-1 as a null-space

Sobolev spaces $W_p^r(\Omega)$, $1 \le p \le \infty$

Def For $1 \le p < \infty$, the closure of the compactly supported smooth functions $C_0^r(\Omega)$ with respect to the norm $\sum_{|\alpha| \le r} \left\| D^\alpha f \right\|_{L_p(\Omega)}.$ For $p = \infty$, we take $W_\infty^r := C^r$.

$$H(x) := \begin{cases} x+1, & -1 \le x < 0, \\ 1-x, & 0 \le x \le 1, \\ 0, & else. \end{cases}$$

So, in this sense $H \in W^1_p(\mathbb{R})$, $1 \le p < \infty$.

$$\left\|f\right\|_{W_p^r(\Omega)} \coloneqq \sum_{|\alpha| \le r} \left\|D^\alpha f\right\|_{L_p(\Omega)} < \infty \qquad \qquad \left|f\right|_{W_p^r(\Omega)} \coloneqq \sum_{|\alpha| = r} \left\|D^\alpha f\right\|_{L_p(\Omega)}.$$

Theorem W_n^r is a Banach space.

Modulus of smoothness

Def The *difference operator* Δ_h^r . For $h \in \mathbb{R}^n$ we define $\Delta_h(f,x) = f(x+h) - f(x)$. For general $r \ge 1$ we define

$$\Delta_h^r(f,x) = \underbrace{\Delta_h \circ \cdots \Delta_h}_{r}(f,x) = \sum_{k=0}^r \binom{r}{k} (-1)^{r-k} f(x+kh).$$

Remarks

- 1. For $\Omega \subset \mathbb{R}^n$, we modify to $\Delta_h^r(f,x) := \Delta_h^r(f,x,\Omega)$, where $\Delta_h^r(f,x) = 0$, in the case $[x,x+rh] \not\subset \Omega$. So for $\Omega = [a,b]$, $\Delta_h^r(f,x) = 0$ on [b-rh,b], for any function.
 - 2. As an operator on $L_p(\Omega)$, $1 \le p \le \infty$, we have that $\|\Delta_h^r\|_{L_x \to L_x} \le 2^r$. Assume $\Omega = \mathbb{R}^n$, then

$$\left\|\Delta_h^r(f,\bullet)\right\|_p \le \sum_{k=0}^r \binom{r}{k} \left\|f\left(\bullet+kh\right)\right\|_p = \sum_{k=0}^r \binom{r}{k} \left\|f\right\|_p = 2^r \left\|f\right\|_p$$

Def The *modulus of smoothness* of order r of a function $f \in L_p(\Omega)$, 0 , at the parameter <math>t > 0 $\omega_r(f,t)_p \coloneqq \sup_{|b| < r} \left\| \Delta_h^r(f,x) \right\|_{L_p(\Omega)}.$

Example non continuous function. Let $\Omega = \begin{bmatrix} -1,1 \end{bmatrix}$. $f(x) = \begin{cases} 0 & x < 0 \\ 1 & 0 < x \end{cases}$

$$= \{ (J, J, J_{L_p}([-1,1]), J_{L_p}([-1,1]) \}$$

$$\mathcal{L}_p([-1,1])$$

$$\begin{pmatrix}
0 \\
1
\end{pmatrix}$$

$$\begin{array}{c}
\lambda \quad (f, x) \\
\end{array}$$

For $p = \infty$ we get $\omega_1(f,t)_{L_{\infty}([-1,1])} = \sup_{|h| \le t} \|\Delta_h f\|_{L_{\infty}([-1,1])} = 1$.

We get $\omega_2(f,t)_{L_n([-1,1])} = (2t)^{1/p}$

In general, we get $\omega_r(f,t)_{L_n([-1,1])} \le C(r,p)t^{1/p}$

 $\left\| \text{For } p \neq \infty \right. \text{ we get } \omega_1 \Big(f, t \Big)_{L_p \big([-1,1] \big)} = \sup_{|h| \leq t} \left\| \Delta_h f \right\|_{L_p \big([-1,1] \big)} = t^{1/p} \,.$

$$\Delta_h(f,x) = \left\{ egin{array}{ccc} 0 & -1 \leq x \leq -h \ 1 & -h < x \leq 0 \ 0 & 0 < x \leq 1 \end{array}
ight.$$

$$\mathcal{L}_r(J, t)_{L_p([-1,1])}, \ 0 < t < 1.1 \text{ or } 0 < t \le t$$

et's compute
$$\omega_r(f,t)_{L_p([-1,1])}, \ 0 < t < 1$$
. For $0 < h \le t$

Let's compute
$$\omega_r(f,t)_{L_p([-1,1])}$$
, $0 < t < 1$. For $0 < h \le t$

 $0 \le x \le 1$

 $\Delta_{h}^{2}(f,x) = \Delta_{h}(\Delta_{h}f,x) = \begin{cases} 0 & -1 \le x \le -2h \\ 1 & -2h < x \le -h \\ -1 & -h < x \le 0 \\ 0 & 0 < x < 1 \end{cases}$

Quick jump ahead (Generalized Lipschitz / Besov smoothness) ... for $\alpha \le 1/\tau$, $r = \lfloor \alpha \rfloor + 1$,

$$\left|f\right|_{B^{\alpha}_{\tau,\infty}}:=\sup_{t>0}t^{-\alpha}\omega_{r}\left(f,t\right)_{\tau}\leq\sup_{0< t\leq 2}t^{-\alpha}\omega_{r}\left(f,t\right)_{\tau}\leq c\sup_{0< t\leq 2}t^{1/\tau-\alpha}<\infty\;.$$

We then say that f has α (weak-type) smoothness. Observe that in this example α can be arbitrarily large as long as the integration takes place with τ sufficiently small.

Machine learning perspective Let f be a 'binary classification' step function with M steps.

You will compute (assignment I) for $0 < \alpha < 1$, $|f|_{B_{\alpha}^{\alpha}} \sim (2M)^{1/\tau}$.

- The feature space is 'problematic' for a simple ML model such as logistic regression.
- As a discontinuous function, 'simpler' smoothness function spaces do not contain it.
- Decision trees will find the clusters, so no need for DL.
- Deep Learning? For $M = 2^j$, the function can be approximated by a neural network with $\sim j$ blocks,
- After each k-th block (2 layers) the function f_k has 2^{j-k} 'steps' with $|f_k|_{B_{-n}^{\alpha}} \sim 2^{(j-k)/\tau}$.

Properties

- 1. $\omega_r(f,t)_p \le 2^r \|f\|_{L_p(\Omega)}, \ 1 \le p \le \infty$.
- 2. $\omega_r(f,t)_n$ is non-decreasing in t
- 3. For $1 \le p \le \infty$ the *sub-linearity* property

$$\left|\Delta_{h}^{r}(f+g,x)\right| = \left|\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} (f+g)(x+kh)\right|$$

$$\leq \left|\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} f(x+kh)\right| + \left|\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} g(x+kh)\right|$$

$$= \left|\Delta_{h}^{r}(f,x)\right| + \left|\Delta_{h}^{r}(g,x)\right|.$$

gives

$$\omega_r (f+g,t)_p \leq \omega_r (f,t)_p + \omega_r (g,t)_p$$
.

4. For $N \ge 1$, $\omega_r(f, Nt)_p \le N^r \omega_r(f, t)_p$, $1 \le p \le \infty$. We prove this using the property (assignment)

$$\Delta_{Nh}^{r}(f,x) = \sum_{k_1=0}^{N-1} \cdots \sum_{k_r=0}^{N-1} \Delta_h^{r}(f,x+k_1h+\cdots+k_rh).$$

Let's see the case
$$r = 1$$
,
$$\Delta_{Nh}(f,x) = f(x+Nh) - f(x)$$

$$= f(x+Nh) - f(x+(N-1)h) + f(x+(N-1)h) - \dots + f(x+h) - f(x)$$

$$= \sum_{N=1}^{N-1} \Delta_h(f,x+kh)$$

-

Then, for any
$$h \in \mathbb{R}^n$$
, $|h| \le t$
$$\left\| \Delta_{Nh}^r (f, \cdot) \right\|_p \le \sum_{k_1=0}^{N-1} \cdots \sum_{k_n=0}^{N-1} \left\| \Delta_h^r (f, \cdot + k_1 h + \cdots + k_r h) \right\|_p$$

Taking supremum over all
$$h \in \mathbb{R}^n$$
, $|h| \le t$, gives $\omega_r(f,Nt)_p \le N^r \omega_r(f,t)_p$. It is easy to see that for $0 , the same proof yields $\omega_r(f,Nt)_p \le N^{r/p} \omega_r(f,t)_p$.$

 $= \sum_{k=0}^{N-1} \cdots \sum_{k=0}^{N-1} \left\| \Delta_h^r(f, \cdot) \right\|_p \le N^r \omega_r(f, t)_p.$

5. From (4) we get for $1 \le p \le \infty$,

$$\omega_r(f,\lambda t)_p \le (\lambda+1)^r \omega_r(f,t)_p, \qquad \lambda > 0$$

proof
$$\omega_r(f, \lambda t)_p \le \omega_r(f, \lfloor \lambda + 1 \rfloor t)_p \le (\lfloor \lambda + 1 \rfloor)^r \omega_r(f, t)_p \le (\lambda + 1)^r \omega_r(f, t)_p$$
.

Theorem [connection between Sobolev and modulus] For $g \in W_p^r(\Omega)$, $1 \le p \le \infty$, we have that

$$\omega_r(g,t)_{L_n(\Omega)} \leq C(r,n)t^r |g|_{W_n^r(\Omega)}, \quad \forall t > 0.$$

Lip spaces

Def For a domain $\Omega \subset \mathbb{R}^n$ and $0 < \alpha \le 1$, we shall say that $f \in Lip(\alpha) = Lip(\alpha, \infty)$, if there exists M > 0, such that $|f(x) - f(y)| \le M |x - y|^{\alpha}$, for all $x, y \in \Omega$. We shall denote $|f|_{Lip(\alpha)}$ by the infimum over all M satisfying the condition. Observe that we can replace the condition by

$$\left|\Delta_h(f,x)\right| \leq M\left|h\right|^{\alpha}, \quad \forall h \in \mathbb{R}^n \Rightarrow \omega_1(f,t)_{\infty} \leq Mt^{\alpha} \Rightarrow t^{-\alpha}\omega_1(f,t)_{\infty} \leq M.$$

For $1 \le p \le \infty$, we can generalize by

$$|f|_{Lip(\alpha,p)} := \sup_{t>0} t^{-\alpha} \omega_1(f,t)_p$$
.

Example For $f(x) = x^{\alpha}$, $0 < \alpha < 1$, $f \in Lip(\alpha)$, $f \notin Lip(\beta)$, $\beta > \alpha$.

Proof

(i) Assume
$$f \in Lip(\beta)$$
, $\beta > \alpha$. Then for $0 < x \le 1$,
$$x^{\alpha} - 0^{\alpha} = x^{\alpha} \le M(x - 0)^{\beta} = Mx^{\beta} \Rightarrow x^{\alpha - \beta} \le M \Rightarrow \text{contradiction}$$

(ii) We use the inequality $(a+b)^{\alpha} \le a^{\alpha} + b^{\alpha}$. Assume w.l.g $x \ge y$, we set a = y, b = x - y and obtain $x^{\alpha} \le y^{\alpha} + (x - y)^{\alpha} \Rightarrow x^{\alpha} - y^{\alpha} \le (x - y)^{\alpha}$.

However, for any
$$0 < \alpha \le 1$$
, $f(x) = x^{\alpha} \in Lip(1,1)$, because

$$\int_{0}^{1} |f'(x)| dx = 1 \Rightarrow f' \in L_{1}$$

$$\Rightarrow \omega_{1}(f,t)_{1} \leq t |f|_{1} = t ||f'||_{1} = t$$

$$\Rightarrow |f|_{Lip(1,1)} = \sup_{t \geq 0} t^{-1} \omega_{1}(f,t)_{1} \leq 1.$$

Generalized Lip are a special case of Besov spaces. For any $\alpha > 0$, let $r := |\alpha| + 1$,

by spaces. For any
$$\alpha > 0$$
, let $r := \lfloor \alpha \rfloor + \lfloor \alpha \rfloor +$

Approximation using uniform piecewise constants (numerical integration)

The B-Spline of order one (degree zero, smoothness -1) $N_1(x) = \mathbf{1}_{[0,1]}(x)$.

Let $\Omega = \mathbb{R}$ or $\Omega = [a, b]$. We approximate from the space

$$S\left(N_{1}\right)^{h}:=\left\{ \sum_{k\in\mathbb{Z}}c_{k}N_{1}\left(h^{-1}x-k\right)\right\} =\left\{ \sum_{k\in\mathbb{Z}}c_{k}\mathbf{1}_{\left[kh,(k+1)h\right]}\left(x\right)\right\}.$$

Theorem: Let $f \in Lip(\alpha)$. Approximation with uniform piecewise constants gives

$$E_{N}\left(f\right)_{L_{\infty}\left(\left[0,1\right]\right)}\coloneqq\inf_{\phi\in S\left(N_{1}\right)^{1/N}}\left\Vert f-\phi\right\Vert _{\infty}\leq CN^{-\alpha}\left\vert f\right\vert _{Lip\left(\alpha\right)}.$$

Inverse Theorem: Assume $E_N(f)_{\infty} \leq MN^{-\alpha}$, $N \geq 1$. Then, $f \in Lip(\alpha)$.

Example
$$E_N(x^{\alpha}) \sim N^{-\alpha}, \ 0 < \alpha \le 1.$$

First glimpse to Adaptive / Nonlinear / Sparse approximation

Approximation using free-knot splines / non-uniform piecewise constants in $L_{\infty}([0,1])$

$$\Sigma_N \coloneqq \left\{ \sum_{j=0}^{N-1} c_j \mathbf{1}_{\left[t_j, t_{j+1}\right)} : T = \left\{t_j\right\}, \ \ 0 = t_0 < t_1 < \dots < t_N = 1 \right\}, \quad \sigma_N \left(f\right)_p \coloneqq \inf_{g \in \Sigma_N} \left\| f - g \right\|_p.$$

Assume f' exists <u>a.e.</u>, <u>Now</u>, create a partition where

$$\int_{t_j}^{t_{j+1}} \left| f' \right| \leq \frac{\left\| f' \right\|_1}{N} .$$

For the example $f(x) = x^{\alpha}$, $0 < \alpha < 1$,

$$\int_0^1 f' = 1 \Longrightarrow \int_{t_i}^{t_{j+1}} f'(u) du = \frac{1}{N}, \quad 0 \le j \le N - 1.$$

This equidistant partition of the range is achieved by choosing $t_j = \left(\frac{j}{N}\right)^{1/\alpha}$.

 $\left| f(x) - a_j \right| \le \frac{\int_{t_j}^{t_{j+1}} \left| f' \right|}{2} \le \frac{\left\| f' \right\|_1}{2N}, \ \forall x \in \left[t_j, t_{j+1} \right].$ This gives a free knot piecewise constant $g \in \Sigma_N$ with

If a_i is the median value in $[t_i, t_{i+1}]$, then

$$\|f-g\|_{\infty} \leq \frac{\|f'\|_{1}}{2N} \ .$$
 Recall that earlier on, we promised that 'integration' of differences will be meaningful. Indeed, for the family

 $f(x) = x^{\alpha}$, $0 < \alpha < 1$, we see the smoothness $\left\| f \right\|_{Lip(1,1)} = \sup_{t>0} t^{-1} \omega_1 \left(f, t \right)_1 \le \sup_{t>0} t^{-1} t \left\| f' \right\|_1 = 1,$

$$|J|_{Lip(1,1)} - \sup_{t>0} \iota \quad \omega_1(J,t)_1 \le \sup_{t>0} \iota \quad |J|_{1} - 1,$$
comes into play to show the advantage of nonlinear approximation over linear approximation

 $f \in Lip(\alpha, \infty), \qquad f \in Lip(1,1),$

$$E_N(f)_{\infty} \sim N^{-\alpha}$$
, $\sigma_N(f)_{\infty} \sim N^{-1}$.

Let $\alpha > 0$, 0 < q, $p \le \infty$. Let $r \ge \lfloor \alpha \rfloor + 1$. The Besov space $B_a^{\alpha} (L_p(\Omega))$ is the collection of functions

inequality).

 $f \in L_{\nu}(\Omega)$ for which $\left|f
ight|_{\mathcal{B}^{lpha}_q\left(L_p\left(\Omega
ight)
ight)}\coloneqq egin{cases} \left(\int_0^\infty \left[t^{-lpha}arphi_r\left(f,t
ight)_p
ight]^qrac{dt}{t}
ight)^{1/q}, & 0< q<\infty, \ \sup_{t>0}t^{-lpha}arphi_r\left(f,t
ight)_p, & q=\infty. \end{cases}$

$$\sup_{t>0} t^{-\alpha}\omega_r \big(f,t\big)_p\,, \qquad q=\infty.$$
 is finite. The norm is

 $||f||_{\mathcal{B}_{q}^{\alpha}(L_{p}(\Omega))} := ||f||_{L_{p}(\Omega)} + |f|_{\mathcal{B}_{p}^{\alpha}(L_{p}(\Omega))}.$

$$||J||_{\mathcal{B}^{\alpha}_{q}(L_{p}(\Omega))} = ||J||_{L_{p}(\Omega)} + |J||_{\mathcal{B}^{\alpha}_{q}(L_{p}(\Omega))}.$$
Why are we asking for the condition $r > |\alpha| + 1$? Otherwise, the space is 'trivial'

Why are we asking for the condition $r \ge |\alpha| + 1$? Otherwise, the space is 'trivial'

Besov Spaces

Theorem (univariate case) For $r < \alpha$, $1 \le p \le \infty$, we get that $B_q^{\alpha}(L_p(\Omega)) = \Pi_{r-1}$ if $\Omega = [a,b]$ and $B_{\alpha}^{\alpha}(L_{n}(\Omega)) = \{0\} \text{ if } \Omega = \mathbb{R}.$

Theorem The space $B_q^{\alpha}(L_p(\Omega))$ does not depend on the choice of $r \ge \lfloor \alpha \rfloor + 1$ (application of the Marchaud

Lemma For any domain taking the integral over [0,1] gives a quasi-norm equivalent to $\|f\|_{B^{\alpha}_q(L_p(\Omega))}$

Proof We replace the integral over $[1, \infty]$ by

$$\int_{1}^{\infty} \left[t^{-\alpha} \omega_{r} \left(f, t \right)_{p} \right]^{q} \frac{dt}{t} \leq C \left\| f \right\|_{p}^{q} \int_{1}^{\infty} t^{-q\alpha - 1} dt$$

$$= C(\alpha, q) \left\| f \right\|_{p}^{q}.$$

Therefore

$$||f||_{\mathcal{B}_q^{\alpha}(L_p(\Omega))} \sim ||f||_p + \left(\int_0^1 \left[t^{-\alpha}\omega_r(f,t)_p\right]^q \frac{dt}{t}\right)^{1/q}.$$

Theorem $B_{q_1}^{\alpha_1}(L_p) \subseteq B_{q_2}^{\alpha_2}(L_p)$ if $\alpha_2 < \alpha_1$.

Proof $(q_1 = q_2)$ We may use $r_1 = \lfloor \alpha_1 \rfloor + 1 \ge \lfloor \alpha_2 \rfloor + 1 = r_2$ to equivalently define $B_{q_2}^{\alpha_2}(L_p)$

For $0 < t \le 1$, $t^{-\alpha_2} \le t^{-\alpha_1}$. So,

$$\begin{split} \left\| f \right\|_{\mathcal{B}_{q}^{\alpha_{2}}\left(L_{p}\right)} &\leq C \left(\left\| f \right\|_{p} + \left(\int_{0}^{1} \left[t^{-\alpha_{2}} \omega_{n_{1}} \left(f, t \right)_{p} \right]^{q} \frac{dt}{t} \right)^{1/q} \right) \\ &\leq C \left(\left\| f \right\|_{p} + \left(\int_{0}^{1} \left[t^{-\alpha_{1}} \omega_{n_{1}} \left(f, t \right)_{p} \right]^{q} \frac{dt}{t} \right)^{1/q} \right) \\ &\leq C \left\| f \right\|_{\mathcal{B}_{r}^{\alpha_{1}}\left(L_{p}\right)} \end{split}$$

Theorem $W_p^m \subseteq B_q^{\alpha}(L_p)$, $\forall \alpha < m$, $1 \le p \le \infty$, $0 < q \le \infty$.

Proof Let $g \in W_p^m(\Omega)$. This implies $g \in L_p(\Omega)$. We have that $r := |\alpha| + 1 \le m$. It is sufficient to take the integral over [0,1].

Integral over
$$[0,1]$$
.
$$\int_{0}^{1} \left[t^{-\alpha} \omega_{r} \left(g, t \right)_{p} \right]^{q} \frac{dt}{t} \leq C \int_{0}^{1} \left[t^{-\alpha} t^{r} \left| g \right|_{r,p} \right]^{q} \frac{dt}{t} \\
\leq C \left| g \right|_{r,p}^{q} \int_{0}^{1} t^{(r-\alpha)q-1} dt$$

$$\leq C |g|_{r,p}^{q} \int_{0}^{1} t^{(r-\alpha)q-1} dt$$

$$\leq C |g|_{r,p}^{q} \int_{0}^{1} t^{(r-\alpha)q-1} dt$$

$$\leq C |g|_{r,p}^{q}.$$

Discretization over cubes

Definition [Dyadic cubes] Let
$$D := \{D_k : k \in \mathbb{Z}\}$$

$$D_{k} := \left\{ Q = 2^{-kn} \left[m_{1}, m_{1} + 1 \right] \times \cdots \times \left[m_{n}, m_{n} + 1 \right] : m \in \mathbb{Z}^{n} \right\}.$$

Observe that $Q \in D_k \Rightarrow |Q| = 2^{-kn}$.

For nonlinear/adaptive/sparse approximation in $L_p(\Omega)$, $\Omega \subseteq \mathbb{R}^n$, it is useful to use the special cases of Besov spaces

$$B_{ au}^{lpha}\coloneqq B_{ au}^{lpha}\left(L_{ au}\left(\Omega
ight)
ight), \qquad rac{1}{ au}=rac{lpha}{n}+rac{1}{p}\,.$$

Theorem $\Omega = \mathbb{R}^n$. We have the equivalence

$$egin{aligned} \left\|f
ight\|_{\mathcal{B}^{lpha}_{ au}} \sim & \left(\sum_{k\in\mathbb{Z}} \left(2^{klpha}\,\omega_rig(f,2^{-k}ig)_{ au}ig)^{ au}
ight)^{1/ au} \sim & \left(\sum_{Q\in D} \left(\left|Q
ight|^{-lpha/n}\,\omega_rig(f,Qig)_{ au}ig)^{ au}
ight)^{1/ au} \;, \ & \left.\omega_rig(f,Qig)_{ au}\coloneqq \sup_{h\in\mathbb{R}^n} \left\|\Delta_h^rig(f,Q,\cdotig)
ight\|_{L_{ au}(Q)}. \end{aligned}$$

The following theorem generalizes what we showed for the univariate case

Theorem Let $f(x) = \mathbf{1}_{\tilde{\Omega}}(x)$, $\tilde{\Omega} \subset [0,1]^n$, a domain with smooth boundary. Then $f \in B_{\tau}^{\alpha}$, $\alpha < 1/\tau$.

Proof For $\Omega = [0,1]^n$, with l(Q) denoting the level of the cube Q, we may take the sum over $k \ge 0$

$$\int_0^1 \left[t^{-\alpha} \omega_r \left(f, t \right)_p \right]^{\tau} \frac{dt}{t} \sim \sum_{Q \in \mathcal{D}, l(Q) > 0} \left(\left| Q \right|^{-\alpha/n} \omega_r \left(f, Q \right)_{\tau} \right)^{\tau}.$$

For any Q, we have that $\omega_r(f,Q)_\tau = 0$, if $\partial \tilde{\Omega} \cap Q = \emptyset$. Otherwise, if l(Q) = k,

$$\omega_r \left(f, Q \right)_\tau \leq C \left\| f \right\|_{L_\tau(Q)} \leq C \left(\int_Q 1^\tau \right)^{1/\tau} = C \left| Q \right|^{1/\tau} = C 2^{-kn/\tau}.$$

Therefore,

$$\begin{split} \left|f\right|_{\mathcal{B}^{\alpha}_{\tau}}^{\tau} &\leq C \sum_{l(\mathcal{Q}) \geq 0} \left(\left|\mathcal{Q}\right|^{-\alpha/n} \omega_{r} \left(f, \mathcal{Q}\right)_{\tau}\right)^{\tau} \\ &\leq C \sum_{k=0}^{\infty} \left(2^{k\alpha} 2^{-kn/\tau}\right)^{\tau} \# \left\{\mathcal{Q} : l\left(\mathcal{Q}\right) = k, \ \mathcal{Q} \cap \partial \tilde{\Omega} \neq \varnothing\right\} \\ &= C \sum_{k=0}^{\infty} 2^{k(\alpha\tau - n)} \# \left\{\mathcal{Q} : l\left(\mathcal{Q}\right) = k, \ \mathcal{Q} \cap \partial \tilde{\Omega} \neq \varnothing\right\} \end{split}$$

We argue that

$$\#\{Q:l(Q)=k, Q\cap\partial\tilde{\Omega}\neq\varnothing\}\leq c(\tilde{\Omega})2^{k(n-1)}.$$
 (*)

This implies that if $\alpha < 1/\tau$

$$|f|_{B_{\tau}^{\alpha}}^{\tau} \le C \sum_{k=0}^{\infty} 2^{k(\alpha \tau - n)} 2^{k(n-1)} = C \sum_{k=0}^{\infty} 2^{k(\alpha \tau - 1)} < \infty.$$

Let's get back to the estimate (*). Let use show a picture argument for $\tilde{\Omega} \subset [0,1]^2$. There is a finite number of points where the gradient of the boundary of the domain is aligned with one of the main axes. Between these points, the boundary segments are monotone in x_1 and x_2 , and therefore can only intersect at most 2×2^k dyadic cubes.

The mathematical foundations of decision trees

For the theory of geometric approximation in higher dimensions we generalize to anisotropic partitions of trees over $[0,1]^n$ (replacing dyadic cubes!)

$$\left|f\right|_{\mathcal{B}_{\tau}^{\alpha}(\mathcal{T})} \coloneqq \left(\sum_{\Omega \in \mathcal{T}} \left(\left|\Omega\right|^{-\alpha} \, \omega_{r} \left(f,\Omega\right)_{\tau}\right)^{\tau}\right)^{1/\tau}$$

Approximation Spaces

Each $f \in X$ has a near best approximation from Φ_N . That is, there exists a constant $C(\Phi)$,

Let $\Phi := \{\Phi_N\}_{N>0}$, each Φ_N is a set of functions in a (quasi) Banach space X, satisfying:

(i)
$$0 \in \Phi_N, \ \Phi_0 := \{0\},$$

(i)
$$\theta \in \Phi_N$$
, $\Phi_0 := \{0\}$
(ii) $\Phi_N \subset \Phi_{N+1}$,

(vi)

(iii)
$$a\Phi_N = \Phi_N, \forall a \neq 0,$$

(iv)
$$\Phi_N + \Phi_N \subset \Phi_{-N}$$
, for some constan

(iv)
$$\Phi_N + \Phi_N \subset \Phi_{cN}$$
, for some constant $c(\Phi)$,

(v)
$$\overline{\bigcup_N \Phi_N} = X$$
,

such that for any
$$N$$
, one has $\varphi_N \in \Phi_N$,
$$\left\| f - \varphi_N \right\|_X \le C E_N \left(f \right)_X, \qquad E_N \left(f \right)_X \coloneqq \inf_{\varphi \in \Phi_N} \left\| f - \varphi \right\|_X.$$

Examples for Φ_N

Linear

- Trigonometric polynomials of degree $\leq N$, $X = L_p([-\pi, \pi]^n)$.
- Algebraic polynomials of degree $\leq N$, $X = L_{p}[-1,1]$.
- Uniform dyadic knot piecewise polynomials over pieces of length 2^{-N} , of fixed order r, $X = L_p[0,1]$.
- Shift invariant refinable spaces $\Phi_N := S(\phi)^{2^{-N}}$, $S(\phi) \subset S(\phi)^{1/2}$, $X = L_p(\mathbb{R}^n)$.

Nonlinear/Adaptive

- Rational functions of degree $\leq N$, $X = L_p[-1,1]$,
- Free knot piecewise polynomials of fixed order r over N non-uniform intervals, $X = L_p[0,1]$.
- N-term wavelets $\Phi_N = \Sigma_N := \left\{ \sum_{\#I < N} c_I \psi_I \right\}, \ X = L_2 \left(\mathbb{R}^n \right)$.

Def Approximation spaces for $\alpha > 0$, $0 < q \le \infty$, $f \in X$,

$$|f|_{A_q^\alpha} \coloneqq \begin{cases} \left(\sum_{N=1}^\infty \left[N^\alpha E_N\left(f\right)\right]^q \frac{1}{N}\right)^{1/q}, & 0 < q < \infty, \\ \sup_{N \ge 1} N^\alpha E_N\left(f\right), & q = \infty. \end{cases}$$

$$||f||_{A_{\alpha}^{\alpha}} := ||f||_{X} + |f|_{A_{\alpha}^{\alpha}}.$$

One can show

$$\left|f
ight|_{\mathcal{A}^{lpha}_{q}} \sim egin{cases} \left(\sum_{m=0}^{\infty} \left[2^{mlpha}E_{2^{m}}\left(f
ight)
ight]^{q}
ight)^{1/q}, & 0 < q < \infty, \ \sup_{m \geq 0} 2^{mlpha}E_{N}\left(f
ight), & q = \infty. \end{cases}$$

Goal: Fully characterize approximation spaces by smoothness spaces (iff)

Characterization of approximation spaces

1. Trigonometric polynomials

$$X = L_p[-\pi,\pi], 1 \le p \le \infty, \Phi_N$$
 trigonometric polynomials of degree N

$$A_q^{\alpha}\left(L_p\right) \sim B_q^{\alpha}\left(L_p\right).$$

2. Dyadic univariate piecewise polynomials

 $X = L_p[0,1]$, Φ_N piecewise polynomials of degree $d \ge 0$, over uniform subdivision of 2^N intervals.

For
$$1 \le p \le \infty$$
, $\alpha < r - 1 + 1/p$, $0 < q \le \infty$,

$$q \leq \infty$$
,
$$A_a^{\alpha} \left(L_n \right) \sim B_a^{\alpha} \left(L_n \right).$$

3. Adaptive non-uniform univariate piecewise polynomials

$$A_{\tau}^{\alpha}\left(L_{p}\right) \sim B_{\tau}^{\alpha}\,,\quad \frac{1}{\tau} = \alpha + \frac{1}{n}\,.$$