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Banach Spaces

Definition Banach space is a complete normed vector space B over a field F = {R,C},

Vector space: 30 B, Vf,geB, a.fcF > af+[geB.
Norm:
i [f]20and |f]=0< f=0.

ii. feB onlyif|f], <.
iii. |af||=le||f]. YaeF.Vf eB.
iv.  Triangle inequality ||/ +g||<|/[+]g]-

Complete: Every Cauchy sequence in B converges to an element of B .
Measure

In this course we only use the standard Lebesgue measure <> the volume of a (measurable) set.
Example: Q=[0.2]' cR", u(Q)=|Q=2".

We will need the notion of zero measure (volume). Example: a set of discrete points



Lp Spaces

Q cR” domain. Examples: Q=[a.b]cR. Q=[0.1] cR".Q=R".

(Ll‘f(x)‘p dt)l_-’p o< p<on,
esssup‘f(x)‘, p =

xe0)

171, @)=

esssgp‘f(x)‘.:sup{/i>0: ‘{x:‘f(x)‘zAH>0}.

A=0

For 1< p<w, L, (Q) are Banach spaces.

For 0 <p<1, L,(Q)are Quasi-Banach spaces (quasi-triangle inequality holds)

I+l <AL +elf -




Theorem [Hélder] I<p<w, fel .gel,
1 1
[, &|= [ &=l <), lel, - +-=1.
Lemma Young’s inequality for products,

a® b*
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ab < — ,
P P
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Lol 1 vaso.
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Proof of lemma The logarithmic function 1s concave. Therefore

log[la*" +lrbp']: log(la*" +[1l]b*"']
p p p p

]. ]. r
>—1 7)1+ —log(b”
>p og(a )err og( )

=log(a)+log(b)=1log(ab).

Since the logarithmic function is increasing, we are done (or we take exp on both sides).



Proof of theorem If p =«
[ Jzl=<Ir1. ] lel<I71. el

The proof is similar for p=1. So, assume now 1< p <o and Hpr = Hng =1.

Integrating pointwise and applying Young’s inequality almost everywhere, gives

Sf(x ) X i
L!‘f(x)g(x)\dxgjﬂ‘ (p) Jg(pr)\ o

= s e () e

L1
p p
Now assuming f,g =0 (else, we are done)

v)| g (x)

ul
2 171, e,
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Theorem Minkowski for Lp spaces 1< p<w, f,ge L,
|7+, <11, +lel, -

Proof for 1< p <o ( p=1w is easier). W.lL.g f,g>0. We apply Holder twice,
[(f+e) =[r(f+e) +]e(f+2)"
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Theorem For 0 < p <1, we have
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k=1

N
<N, -

r J=1

(i1) f+g||p < i (Hf”p +Hng) or in general

Proof The quasi-triangle inequality (i1) is derived from (1). Observe first

1
l<r=—<w .
A i
roor

Then

lVp

N lp N N 1 (1-p)l/p N | ¥
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To prove (i), we need the following lemma
Lemma I For 0 < p<1 and any sequence of non-negative a = {a, } .

ry
[Z a, ] <> al
kK K
Proof Observe that it is sufficient to prove (@, +a, )p < a +aj and then apply induction.
To prove the inequality use 4 (#)==1"+1—(¢+1)" for t>0. h(0)=0 and A'(¢) = pt"™" - p(t+1)p_l >0.

Therefore, h(1)>0, for > 0. This gives 77 +1>(z+1)". Setting t =a,/ a, gives

b e
a a
L1 +12| 2+1| =af+af >(a,+a,)’.
al al

Proof of Theorem (i) : Simply apply the lemma pointwise for x € Q and then Tonelli’s theorem for the
exchange of integration and sum

AR IE | RO ARG I NAB S A2



Multivariate algebraic polynomials
We define 11| (R”) : polynomials of degree » —1.
a| = ZQ'I. .
i=1

Monomial x* =] [x”, x=(x.....x,)eR".

i=1

Let a=(a,.,...., )€ 7]

+ 2

Polynomial P eIl |



Spaces of smooth functions

Multivariate derivatives: A partial derivative of order r

af 7
a:(al,...,a”)EZj, D f— la:)La,”, Q’|:: OL'I-:?‘.

1 o n i=1

Definition C’ (Q) : The space of all continuously differentiable functions of order » in the classical sense.

D 120

af<?

D f

The semi-norm

D*f

|f|c*"(Q:] = |Z |

Q’|=F'

1s a semi-norm with the polynomials

w

Examples € (R) Then |/l o, = "), isanomn 7] . <"

of degree r—1 as a null-space




Sobolev spaces W, (Q2), 1<p<w

Def For 1< p <o, the closure of the compactly supported smooth functions C; (€2) with respect to the norm

> |pef

||:1f|iij'

] .For p=w,wetake W =(C".

L(0

x+1, —-1<x<0, i ]
H(x)=<1-x, 0<x<l,, 05 |- .

0, else. 00 |

Ly L1 L Ly L1 1
-1.5 -1.0 -0.5 0.0 0.5 1.0 15

So, in this sense H €W, (R),1<p<w.

The Sobolev norm and semi-norm.

|
i) gﬁ; jp°s

e = 2 |7

=

|f

‘EP(Q] <@ |f L(Q)

Theorem /7] is a Banach space.



Modulus of smoothness

Def The difference operator A, . For he R" we define A, (f,x)= f(x+h)— f(x). For general 7 21 we
define

()= 8,8, (1) =30 e i)

k=0
r

Remarks
1. For QcR", we modify to A} (f,x):= A} (f,x,Q), where A, (f,x)=0, in the case[x,x+rh|z Q. So

for Q=[a,b], A, (f,x)=0 on [b—rh,b], for any function.

2. Asan operatoron L, (Q) , 1< p<oo, we have that | i <2".Assume Q=R", then

L,—L,

<[ sl =Z( i, 21,

Def The modulus of smoothness of order r of a function f e L, (Q), 0<p<ow, at the parameter 7> 0

o, (f.1),=sup|a; (f.0)]

|f?|£r

a5 (1),

L(Q)



Example non continuous function. Let Q= [-1,1]. f(x)= {

Let’s compute @, (f,r)L (-11)* O<t<l.For0<h<t

0

A;?(f,x): 1
0

=1.

For p = we get @, (f.7) ;

L([-11])

([-1.1)

For p 7o we get (1), ¢,y = wf”%f ”f-p([—lsln =7

Aﬁ(flx)::Aﬁ(Aﬁf}x):

We get o, ( f. f) (2f)

In general, we get o, ( f, z‘) (L) < C(r, p)t”

0 x<0
1 O0<x

—1<x<-h
—h<x<0
O<x<l1
0 —1<x<-2h
1 —2h<x<-h
-1 ~h<x<0
0 0<x<l



Quick jump ahead (Generalized Lipschitz / Besov smoothness) ... for a <1/7, r = Laj +1,

I/

. =supt ‘o, (f.t) <supr o (f.t) <csup T <,
£ >0 0<t=2

O<=2

We then say that f has o (weak-type) smoothness. Observe that in this example @ can be arbitrarily large as
long as the integration takes place with 7 sufficiently small. f(t)

Machine learning perspective Let / be a ‘binary classification’ step function with M steps.

You will compute (assignment I) for 0 < <1, ‘ Sle ~ (2M )m : :

- The feature space is 'problematic’ for a simple ML model such as logistic regression.

- As a discontinuous function, ‘simpler’ smoothness function spaces do not contain it.

- Decision trees will find the clusters, so no need for DL.

- Deep Learning? For M =27, the function can be approximated by a neural network with ~ j blocks,

- After each k-th block (2 layers) the function f, has 2/~ ‘steps’ with |f|. ~ P

o
B«




Properties

1. (0},(f,l‘)p <" "f";p(q]’ l<p<w.

2. @,(f.t), is non-decreasing in ¢
3. For 1< p <o the sub-linearity property
r ?4.

8, (F + &)= |+ g) (x+ k)

r ?;-l .

> ;(:J(l)r_ﬁc g(x+kh)

=0

_|_

IA
B
ﬁ-‘""‘

(—1)HIC f(x+kh)

gives




4. For N>1, o,(f ,Nz‘)p <No (f ,z‘)p, 1< p <o . We prove this using the prpperty (assignment)

N-1 N-1
Ay (fox)=D D A (fox+kh+-+kh).
k=0 k=0

Let’s see the case r =1,
Am(f,x):f(x+Nh)—f(x)
:f(x+Nk)—f(x+(N—l)k)Jrf(er(N—l)k)—---+f(x+h)—f(x)

N-1
= > A, (f,x+kh)
k=0

Then, for any e R", |h| <t

|A;f;? (f,-)”p < N_l---Nf”A; (f,-+!clh+---+k,,h)||p
k=0 k=0
N-1 N-1

=> 2 |An () J<No.(f1),.
k=0 k=0

Taking supremum over all € R",

h|<t,gives o, (f,Nz‘)p <N'o, (f,z‘)p. It is easy to see that for 0< p <1,
the same proof yields o, ( f, V¢ )p <N"“?o.(f, z‘)p.



5. From (4) we get for 1< p<w,
o, (f.21), <(A+1) o, (f.1),, >0

proof o, (f,/"{t)P <o, (f,L/I+1Jz‘)p < (Lﬁ,+1_|)r @, (f,z‘)p <(A+1) o, (f,z‘)p.

Theorem [connection between Sobolev and modulus] For g e W) (Q) , 1< p<oo, we have that

(01,(g,l‘)LP{Q:] EC(F’H)IF‘|g|ﬁ§'{Q)3 Vi>0.



Lip spaces

Def For a domain Q cR” and 0 <« <1, we shall say that f € Lip(a) = Lip (e, ), if there exists M >0,

such that ‘f(x)—f(y)‘SM‘x_J’

satisfying the condition. Observe that we can replace the condition by

A, ()] < Ml

For 1< p <o, we can generalize by

|f| = supr_aa)l(f,r)

Lip(a.p) -0 p’

Example For f(x)=x", O<a <1, felip(a), feLip(B). f>a .

“, forall x,y € Q. We shall denote ‘ f ‘Epm by the infimum over all M

T VheR = o(f.1) <Mt =10 (f.1) <M.

pr
’ ﬁ*““‘




Proof
(i) Assume fe€Lip(f), f>a.Thenfor 0<x<1,
x4 —0%=x*<M|(x —0)’6 = Mx” = x** < M = contradiction
(i)  We use the inequality (a +b)a <a“+b* . Assume w.lg x>y ,weset a=y b=x—y and obtain

x Sy"’+(x—y)a = x% -y S(x—y)ﬂ.

However, for any 0 <a <1, f(x)=x%€Lip(L1), because
1 ¥
If(x)‘dlejf'ELl I f,f”f
0 f'/
= o (f.1), < ‘f‘ ff
=l = SUpT (f J)l <1 /
0 1
Generalized Lip are a special case of Besov spaces. For any a >0, let r = l_aj +1, I

f

52 =supt c)(f r) .

=0



Approximation using uniform piecewise constants (numerical integration)

The B-Spline of order one (degree zero, smoothness -1) N, (x) = 1[0_1] (x) :
Let Q=R or Q= [a, b] . We approximate from the space

S(N,) = {chNl (h'x- k)} = {Z 2% T (x)} .

kel kel

Theorem: Let f € Lip(af) . Approximation with uniform piecewise constants gives

EN(f)Lx([o.l]) = inf f‘¢||y S CN_a|f|L;p(a)'

geS(N )"

Inverse Theorem: Assume £ (f)y <MN“, N2>1.Then, f € Lz’p(a).

Example EN(xO‘)~N—“, O0<a<l.



First glimpse to Adaptive / Nonlinear / Sparse approximation

Approximation using free-knot splines / non-uniform piecewise constants in I_ ([01])

N-
{ Cflrr;u] {TJ},0—f0<f1<---<r‘\,—1}, \(f) ]anf g”
J=0
Assume [’ exists a.e., Now, create a partition where
For the example f(x)=x%, 0<a <1, // g
1 r Ij+1 ' . 1 . j I , i
_[Uf_1:>_|.rj f(u)du-;, 0<j<N-1. // |
e VL
. . e .. . . . B J : : :
This equidistant partition of the range is achieved by choosing 7. = (E] o o -



If a, is the median value in [rj,rj +1] , then
J, V71

i
2

< ;N‘ _Wx e[rj,r#l] .

‘f(x)—aj‘é

This gives a free knot piecewise constant g € 2, with

frl
ON

|/ ~el. <

Recall that earlier on, we promised that ‘integration’ of differences will be meaningful. Indeed, for the family
f(x)=x% 0<a <1, we see the smoothness

‘f‘a—pu_u =supt'@, (f.t), <supt't|
) =0 =0

Iz

comes into play to show the advantage of nonlinear approximation over linear approximation

1:1’

felip(a.»), feLip(Ll),

E;,\,(f)x*-N_“ ) O';\r(f)x‘"N_l.



Besov Spaces

Leta>0,0<g.p<oo.Letr> LaJJrl. The Besov space B (Lp (Q)) is the collection of functions
feL, () for which

| J.r[raa) (f T) T% ) D<g<m
oL r > p t i 9 ”
supt o, (f,r)p, q = .

t=0

‘f‘gg[zp(g)'] =

1s finite. The norm 1s
HfHB;‘[LP[Q]] = Hf||ﬁp[£1] +‘f‘3;°(zp(g]] )

Why are we asking for the condition r > Laj +1? Otherwise, the space is ‘trivial’
Theorem (univariate case) For r <o, 1< p <o, we get that B’ (Lp (Q)) =II,_, if Q=[a.b| and
BY(L,(Q))={0} if a=R.

Theorem The space B (Lp (Q)) does not depend on the choice of » > LaJ +1 (application of the Marchaud
inequality).



Lemma For any domain taking the integral over [0,1] gives a quasi-norm equivalent to ||f].. (@)
g\

Proof We replace the integral over [1, oo] by
([ e it [ -aa-
J'[r @, (f,r)p]q75 C||inJ} waL
1 ] 1
=C(a.q)|/1,-

Therefore

Wl =111+ [0 (0, 4]




Theorem B}* (Lp) C B (Lp) if a, <a,.

Proof (g, =g,) We may use r, = La1J+1 > Laz J +1=r, to equivalently define B; : (Lp)

For 0<t <1, <t ™. So,

Mlez, =€ ||fp+[H @, (/1) }ﬂ }
<c||fp+m o (F1) Hfj }

<C ‘f”B;q[Lp]




Theorem W™ gB“(L ), Va<m,l<p<o,0<g<om,
e g o
Proof Let g W’ (Q). This implies g € L, (Q2). We have that 7 = |_aJ +1<m. It is sufficient to take the

integral over [0,1] :

1 1
060, #<cflrrie ] 4
0 4 0
<Clgf | jt“""‘”‘la’r
0
ECg;.




Discretization over cubes

Definition [Dyadic cubes] Let D:={D, : k€ Z}
D, ={0=2""[m.m +1]x x[m, .m, +1] :meZ"}.
Observe that Qe D, = |Q|=27"".

For nonlinear/adaptive/sparse approximation in L, (), Q@ R”, it is useful to use the special cases of Besov

spaces

pom), Lol

Theorem QQ=R". We have the equivalence

e {Z(E’“‘ wa-(fﬁ‘*‘)r)r]m {Z(IQ“'”w;-(wa))r } »

k=L geD

o, (f.0), =sup

heR"

AL (f.0.)

‘ﬁr(fé'] ’



The following theorem generalizes what we showed for the univariate case
Theorem Let f(x)=1,(x), Qc [0,1]“ , a domain with smooth boundary. Then f € BY, a <1/7.

Proof For Q2= [0,1]” , with 7(Q) denoting the level of the cube O, we may take the sum over k >0

[[ra(n,] T~ 3 (" e(r.0))

T

For any O, we have that @ (f.0) =0, if 80N Q=3 . Otherwise, if /(Q)=k.

'z i it
0.(£.0), <Clf], o <C([ 1) =clo}" =2

Therefore,

./

- <CY (lo*" o (1.0),)
1(Q)z0
< ci(zmz—‘”"-’* ) #10:1(0)=k, 0NeQ# 2}

— ci 2““H”#{Q 1(Q)=k. QNoQY = @}



We argue that
#0:1(0)=k. 0N&Q =D} <c(Q) 2. (*)
This implies thatif <1/ 7

| f|;g 3 Ci oK ar-n) k() _ Ci pHar) _
k=0 k=0

Let’s get back to the estimate (*). Let use show a picture
argument for Qc [0, l]2 . There is a finite number of

points where the gradient of the boundary of the domain
is aligned with one of the main axes. Between these
points, the boundary segments are monotone in x;

and x,, and therefore can only intersect at most 2x2*

dyadic cubes.




The mathematical foundations of decision trees

For the theory of geometric approximation in higher dimensions we generalize to anisotropic partitions of trees

over [0,1]" (replacing dyadic cubes!)

1/t

f

e S0 o (70|

Qe7

Qe7

Iteration 1 Iteration 2

Iteration 3 Iteration 4



Approximation Spaces

Let ®:={D,} o> €ach @, is a set of functions in a (quasi) Banach space X', satistying:

N

() 0e®y, @;:={0},

(11) b,cd,.,,

(i) ad, =D,, Va=0,

(1v) D, +D,, c D, for some constant c(t‘IZ') \
v)  Uy®y=4X,

(vi)  Each f €X has a near best approximation from @, That is, there exists a constant C(®),

such that for any N, one has ¢,, € ®,;,

1 =oull, <CE()ys Eo(f)y = inf |f =0l



Examples for @,

Linear
- Trigonometric polynomials of degree <N, X' =1, ( [—fr, ﬂ']n) .
- Algebraic polynomials of degree <N, X =L [—1,1] :
- Uniform dyadic knot piecewise polynomials over pieces of length 27", of fixed order 7, X = L, [0, 1] :

- Shift invariant refinable spaces @,, == S(¢)2‘-" , S(¢)c S(gﬁ)y2 L X=1, (]R”) :
Nonlinear/Adaptive

- Rational functions of degree <N, X = L, [—1,1] \

- Free knot piecewise polynomials of fixed order 7 over N non-uniform intervals, X =7, [0;1] :

- N-term wavelets @, =X, :{ Z cry,ff}, X=L, (R”) :

#I=N



Def Approximation spaces for « >0, 0<g<o, feX,

One can show

‘f‘{g =9

‘f‘{g R

[i[N“EN(f)T ;] Ocgem

N=1
sup N“E,.( f). g=on.

Nzl

|7

‘{;" = HfHX +‘f‘{§ .

i
[2”"’"‘]52,” (f)]q] q , O0<g<om,
m=0

sup 2" Ey (f). g = .

m=0)

Goal: Fully characterize approximation spaces by smoothness spaces (iff)



Characterization of approximation spaces

1. Trigonometric polynomials

X=1L, [—zr,fr] , 1< p<oo, ®, trigonometric polynomials of degree N

Ay (LP)HB; (Lp)°
2. Dyadic univariate piecewise polynomials

X=1, [O, 1] , @, piecewise polynomials of degree 4 > 0, over uniform subdivision of 2" intervals.

Forl<p<w,a<r-1+41/p,0<g<m,
A;(LP)NB;’ (Lp)'

3. Adaptive non-uniform univariate piecewise polynomials

a « 1
A (L,)~ B2, SR
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