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The role of deep learning

Good separability in input feature space - classical ML models are

sufficient

o Logistic Regression, Support Vector Machines, Random Forest, Gradient Boosting, etc.

If not, can we transform to a better feature space through feature
engineering/deep learning ?




Deep Learning building blocks



Convolutions

Assignment: The convolution of f, ge I, (R”) is defined by f *g(x):= .[w flx=y)g(y)d.

(1) Prove that fxgel, (R”),
(11) Prove that fxg=g=* [,
(111) With the Fourier Transform defined by f (w) = I

RF?

f (x)e_f<“"x>cfr , for weR", show
that
(£+8) (w)=F(w)i(w). vweR'.
(1v) Let felL, (Rz) be a piecewise constant function. Design a ‘filter’ ge L, (IR{2 ) , With

support in [—&/2,&/ 2]2 , for some ¢ >0, such that f*g 1s ‘significant’ only in &

neighborhoods of points where f has ‘almost’ vertical edges.



Discrete convolutions

1D discrete filter g = {gk}i_M . The filter size is 2M +1. Let [ = {fj} '

j==="

. The discrete

convolution is
frg(k)=2 fg,.
jz—x

Examples:

i . 1 11
1. Smooth convolution, low-pass filter g =(g . g,.2,)=| === | .

4°2°4
. . I 1T 1 .
2. High-pass filter g =(g ,.g,.2)= {—1,5,—1}. It has two vanishing moments:
a. If /. =¢, Vj, f*g(k)=—lc+lc—lc=0,
g | 4 2 4 |
b. If f/ =aj+b, f*g(k)=—i(a(k—l)+b)+%(ak+b)—i(a(k+l)+b)=0.

It is designed to detect ‘jumps’
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Discrete convolutions

— Data
m —— Kemel Size 10

mode : {'full’, ‘valid’, same’}, optional

‘full”:
By default, mode is ‘full'. This returns the convolution at
each point of overlap, with an output shape of (N+M-1,).
At the end-points of the convolution, the signals do not
50 100 150 200 overlap completely, and boundary effects may be seen.
‘same”
lmport numpy as np Mode ‘same’ returns output of length max(M, N).
data = np.load("example_data.npy") Boundary effects are still visible.
kernel_size = 180
kernel = np.ones(kernel_size) / kernel_size ‘valid”:
data_convolved = np.convolve(data, kernel, mode='same') P
Mode ‘valid’ returns output of length max (M, N) -

min(M, N) + 1. The convolution product is only given
for points where the signals overlap completely. Values
outside the signal boundary have no effect.



Discrete convolutions

[
4

Filter size is (2M +1) . |Let f = {fj} .. The discrete

=7
jh;ﬂ

2D discrete filter g = {gkl.kl }

kl 'k-_). = J.M

convolution is

Srg(k)=rrg(k.k)=2 /g,

JeZ~©

Example Smooth convolution, low-pass filter

1 1
16 8 16
11
€215 7 3
1 1 1
16 8 16



Discrete convolutions

One can decompose a symmetric 2D filter through a tensor decomposition using two 1D filters
£-8;
Srg(kuky) =|[ (k) * & J(k) % &, (Ko ky)
Example g, =g —“‘—(“‘ & "‘)— 111
1= 8=\ \Lg4-80 & 1°7°7
f*g(klnk )_ [ fk kT fk—lk +— fk ]k+1]

+= Zﬁcl.kz—] +5fk1.k2 +ka1.k2+lJ

1(1 1 1
+— Zﬁclﬂ.kz—l "'Ef,’cpq.i!c2 +Zﬁc1+1.kl+1]



Zero padding for a 3x3 filter
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Mirror/reflection padding for a 3x3 filter
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Classic convolutions — Curvelets

Curvelets: a 2d “stable basis”

. . 7
designed to capture edge >

singularities
Each element is associated with:
location, frequency, directionality

Coefficients of curvelets not located
“on” or not aligned with edge
singularity are “insignificant”

—— Scale 2°

_\ Coefficient ~ 0



Curvelets — construction via tiling in Fourier
domain
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Figure 1: Curvelet tiling of space and frequency. The figure on the left represents the induced tiling
of the frequency plane. In Fourier space, curvelets are supported near a “parabolic™ wedge, and
the shaded area represents such a generic wedge. The figure on the right schematically represents
the spatial Cartesian grid associated with a given scale and orientation.



Classic convolutions — Curvelets
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Figure 10: Curvelets at increasingly fine scales. The left panels represent curvelets (real part) in
the spatial domain (as functions of the spatial variable z). The right panels show the modulus of
the Fourier transform (as functions of the frequency variable w). The color map is the same as in

Figure 9.



Convolutions — through learning

- Convolution filters of
first layer in a computer
vision deep learning
network: learning of
edge & color detectors
The coefficients of the
filters are part of the
“weights” of the
network.




Learning filter decomposition

A trained “convolutional pipeline” for 14 unknowns, instead of 49...

Filter concat

Filter concat

Figure 5. The schema for 17 x 17 grid modules of the pure
Inception-v4 network. This is the Inception-B block of Figure 9]



3D discrete convolutions

In computer vision architectures, we typically need 3d convolutions in the inner layers: x,y and z
is the feature map (channel) dimensions

[rg(k)=[*g(k.ky.ks)= f.g.,

jez?

The filter is typically localized in the x,y direction, but not in the z direction.

128 filters, each of dimension 3x3x192 \%\13 }I\\H /\ /\
3 -'.

3= 13 dense | [dense

192 128 Max
pooling <948 2048




Fully connected (dense) layers

Definition Let M € M __ be a nonsingular matrix and » € R™ a (bias) vector. The associated

=m

affine transform A4:R" — R", is defined by Ax=Mx+b, VxeR".

Fully connected layer — every input vector element potentially contributes to any output vector
element x,, = Ax, = Mx, +b.

Remark A Conv layer is a special case of a FC layer! allows to significantly reduce the number
of (unknown) weights, based on the assumption of locality, 1.e. the output (neurons) have a
localization property, they are associated with visual elements in a certain neighborhood (whose
support grows with the depth of the layers). So, they should only be affected by inputs in a
certain neighborhood.



Non-linearities

A decomposition of affine transforms is an affine transform
A4, (4x)=M,(4x)+b, =M, (Mx+b)+b, =(M,M,)x+(Mb, +b,).

So, without any other functionality, a neural network essentially collapses into one affine

transform.

Typical non-linearities

e_’( _ e—_?(
tanh (x) = sinh (x) -2 — = ¢ - e:x \ ReLU (Rectifier Linear Unit)
cosh (.x) e +e” e +e”
2

f(x) = tanh(x)

T3V

+2.0

-1.0

-2.0




Applying non-linearities

Typically, non-linearities are applied pointwise after the affine operations (Conv or FC). So, if

Non-linearities can be explained in two ways:

1. Neural Sciences approach - Simulation of neuron activation

2. Approximation-theoretical explanation of RelLu — The entire NN can be viewed as a
continuous piecewise linear approximation over the original feature space. Why? Over
sub-domains of the original feature subspace, the NN collapses into one local affine

transform.
|



NN as piecewise linear approximation over
the input space
N N A

Figure 1. How many linear regions? This figure shows a two-
dimensional slice through the 784-dimensional input space of
vectorized MNIST, as represented by a fully-connected ReLLU
network with three hidden layers of width 64 each. Colors denote
different linear regions of the piecewise linear network.



Dimension reduction operations

Typically applied after the non-linearities in encoder architectures used for
classification

Image Matrix

2 1

Q Conv 3x3 with stride=2,padding=0

Max Pool {1121141 11111
1]1
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Pytorch image CIFAR classification example

b

For this tutorial, we will use the CIFAR10 dataset. It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’,
‘ship’, ‘truck’. The images in CIFAR-10 are of size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size.

B L [ | r
automobile EE‘HE‘
bird ﬂ; q:l\ ' -.
«  EEUEHSEEEsP
deer
oo [HESEHSBRIE AR

voo I I I O W S
rorse W 0 V) IR R S T
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Pytorch image CIFAR classification example

impoxrt toxch
import torch

class Net(nn
def in
supe

self.
self.

self
self

self.
self.

.nn as nn
.nn.functional as F

CLASS torxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,

-Module): groups=1, bias=True, padding_mode="'zeros ', device=None, dtype=None

it (self):

r(). init ()

convl = nn.Conv2d(3, 6, 5)

pool = nn.MaxPool2d(2, 2)

.conv2 = nn.Conv2d(6, 16, 5)

.fc1l = nn.Lineax(16 * 5 % 5, 120)
fc2 = nn.Linear (120, 84)

fc3 = nn.Lineax (34, 10)

def forward(self, x):

x X X X X X

retu

net = Net()

self.pool(F.xrelu(self.convl(x)))
self.pool(F.relu(self.conv2(x)))

toxch.flatten(x, 1) # flatten all dimensions except batch
F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

rn X

[SOURCE]

Layer Dimensions:
Layer O - 3x32x32
Layer 1 - 6x28x28 (pooling) -> 6x14x14
yer 2 - 16x10x10 (pooling) -> 16x5x5

Layer #weights:
Layer 0> 1 - 6x3x5x5+6 = 456
Layer 122 - 16x6x5x5+16=2416
Layer 2> 3 - 48,000+120 = 48,120
Layer 3->4 - 10,080+84 = 10,164
Layer 425 — 840+10=850



Pytorch image CIFAR classification example

X = (Xl,--., Xlo) is the representation at the last layer

impoxrt torch.optim as optim

criterion = nn.CrossEntropylLoss()
optimizer = optim.SGD(net.parameters(), lr=0.0071, momentum=0.9)



Pytorch image CIFAR classification example

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0
for i, data in enumerate(trainloadexr, 0):
# get the inputs; data is a list of [inputs, labels]

inputs, labels = data [1, 2000] loss: 2.213
[1, 4000] loss: 1.887
# zero the parameter gradients [1, 6000] loss: 1.699
op‘timizer.zero_grad() [1, BE}@E}] loss: 1.597
[1, 10000] loss: 1.506
# forward + backward + optimize [1, 12000] loss: 1.471
touts = (4 ts) [2, 2000] loss: 1.412
outputs = netiinputs [2, 4000] loss: 1.373
loss = criterion(outputs, labels) [2. 6000] loss: 1.338
loss.backwaxrd() [2, 8000] loss: 1.301
optimizer.step() [2, 100001 loss: 1.286
[2, 12000] loss: 1.291

# print statistics Finished Training

running_loss += loss.item()

if i % 2000 == 1999: # print every 2008 mini-batches
print(f'[{epoch + 1%, i + 1:5df] loss: jrunning_loss / 2000:.3f%')
running_loss = 0.0

print('Finished Training')



IMAGENET

Explore Download Challenges Publications CoolStuff About

Not logged in. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have
an average of over five hundred images per node. We hope ImageNet will become a useful resource for
researchers, educators, students and all of you who share our passion for pictures.

Cllck here to learn more about lmageNet Click here to Jom the ImageNet mailing list.
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ImageNet classification of 1000 classes —top 5
results

28% ~AlexNet, 8 layers
26%

: ZF, 8 layers
VGG, 19 layers
‘ GooglLeNet, 22 layers

16%
ResNet, 152 layers

2% J (Ensemble)

739 " 7% ) ) SENet
K 'éo},' '5 b’ ,4', 2 2;0/ """ Human error

100% accuracy and reliability not realistic

BN Traditional computer vision
BN Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017



VGG-16 Net (2015)

convl

conv2

conv3

conv4

28 x 28 x 512
56 x 56 x 256

LA
11/% 112 x 128

L
224 x 224 x 64

convs fob fe7 fo8

— _’H

1 x1x4096 1x1x1000

14 x 14 x 512
7x7x512

@ convolution+ReLU

@ max pooling
7 fully connected+4+RelLU



Residual Blocks

Deep Residual Learning for Image Recognition « Cited 114,474 times

Kaiming He Xiangyu Zhang Shaoging Ren
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun } @microsoft.com

weight layer
‘f(x) lrem

weight layer

X

identity

Figure 2. Residual learning: \a building block.

Modeling residuals

Jian Sun

60— _f-;",;":‘ __________________
S0 ——— = - - —
S
G40 —— — = ——
@ 34-layer
[N AN A A
W —————m—m——————— - — - = - ,
plain-18 ResNet-18 TN AR A,
—plain-34 —ResNet-34 34-layer
20 ‘ . ‘ , 20 . . . 1
0 10 20 30 40 50 0 10 20 30 40 50
iter. (led) iter. (led)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.



Inception Blocks (2016)

Filter concat

Filter concat

3x3 Conv
(96)
T 1x7 Conv
1x1 Conv 3x3 Conv 3x3 Conv 1x1 Conv (256) (224)
(96) (96) (96) (128) 1 r
T T T x1 Conv
1x1 Conv 1x7 Conv (224)
s Eas 1x1 Conv 1x1 Conv 1x1 Conv (384) (224) f
(26) (64) (64) i p
X x7 Conv
1x1 Conv (192)
Avg Pooling (192) T
. 1%1 Conv
Filter concat (192)
Figure 4. The schema for 35 x 35 grid modules of the pure Filter concat

Inception-v4 network. This is the Inception-A block of Figure 9]
Figure 5. The schema for 17 x 17 grid modules of the pure

Inception-v4 network. This is the Inception-B block of Figure|9)
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Softmax

T

Dropout (keep 0_8)

T

Avarage Pooling

T

3 ¥ Inception-C

I

Reduction-B

T % Inception-B

Reduction-2

4 ¥ Inception-A

Input (299x299x3)

Inception-v4, Inception-ResNet and

Chitsirt 1003
the Impact of Residual Connections on Learning
Cuitgiit 1538
Christian Szegedy Sergey loffe Vincent Vanhoucke
Google Inc. sioffellgoogle.com vanhouckellgoogle. com
Tt - 1600 Amphitheatre Pkwy, Mountain View, CA
szegedy@goocgle. com
Ot Enaci 58 Alex Alemi
alemi@goocgle.com
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Cupalr 1701710k
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Home > Computer Vision — ECCV 2014 > Conference paper

Visualizing and Understanding
Convolutional Networks

Conference paper

pp 818—-833 | Cite this conference paper

Computer Vision — ECCV 2014

(ECCV2014)

Matthew D. Zeiler & Rob Fergus Sections References




image size 224

filter size 7

J’stride 2

stride 2

Input Image

Fig. 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with
3 color planes) is presented as the input. This is convolved with 96 different 1st layer
filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting

r\355

3x3 max pool

Visualizing and Understanding Convolutional Networks

110 26

Ix3 max

pool
stride 2

K%‘Sﬁ

contrast
norm.

1
1 w256

Layer 2

13

1
1 w384

Layer 3

Layer 4

13

256

Layer 5

4096
units

825

C
class
softmax

Layer6 Layer7 Qutput

feature maps are then: (i) passed through a rectified linear function (not shown), (ii)
pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across
feature maps to give 96 different 55 by 55 element feature maps. Similar operations are
repeated in layers 2.3.4.5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions).
The final layer is a C-way softmax function, C' being the number of classes. All filters
and feature maps are square in shape.
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3 Training Details

We now describe the large convnet model that will be visualized in Section
The architecture, shown in Fig.[3] is similar to that used by Krizhevsky et al. [18]
for ImageNet classification. One difference is that the sparse connections used
in Krizhevsky’s layers 3.4,5 (due to the model being split across 2 GPUs) are
replaced with dense connections in our model. Other important differences re-
lating to layers 1 and 2 were made following inspection of the visualizations in
Fig. 5l as described in Section [4.1]

The model was trained on the ImageNet 2012 training set (1.3 million images,
spread over 1000 different classes) [6]. Each RGB image was preprocessed by resiz-
ing the smallest dimension to 256, cropping the center 256x256 region, subtract-
ing the per-pixel mean (across all images) and then using 10 different sub-crops
of size 224x224 (corners + center with(out) horizontal flips). Stochastic gradient
descent with a mini-batch size of 128 was used to update the parameters, starting
with a learning rate of 102, in conjunction with a momentum term of 0.9. We

34



Feature Visualization: Fig. [2| shows feature visualizations from our model
once training is complete. For a given feature map, we show the top 9 acti-
vations, each projected separately down to pixel space, revealing the different

.

Visualizing and Understanding Convolutional Networks 823

structures that excite that map and showing its invariance to input deformations.
Alongside these visualizations we show the corresponding image patches. These
have greater variation than visualizations which solely focus on the discriminant
structure within each patch. For example, in layer 5. row 1, col 2, the patches
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Simple loss functions and backpropagation



Regression loss functions

~

f (x) is the output of the network. It needs to be piecewise
smooth. So the building blocks of the network need to be
piecewise smooth.

For example, the max-pooling operation max( f,(x),..., fy (x))
of smooth functions { fyee fy }, is piecewise smooth.

1 -
Mean Squared Error (MSE) T ( f (xi ) -, )2 Piecewise

train 1€ lirin smooth

Mean Averaged Error (MAE) 1 f(xi)— i‘

#1

train 1€l



Backpropagation

Assume a model with one weight f(x)= f(x,w). Assume loss is L(w)= Z(f(xl. W)=, )2

I

Minimization is performed using gradient descent. Start with an initial (random) guess w'® . At

each step k& compute for a certain subset A of the training dataset

a5
dw

5f(xz.,w(k})
=

_ mY_
e 21_;'(']((){”% ) Ji




Backpropagation

Now suppose we are using a 2-layer model with 2 weights f(x)= £, (f;(x.w).w,), w,w, € R,

W = (14;1,“;2 ) .

| 3 o\ /i -X‘f,wl(ki] ngk]
_22( (fl(l ' )ow J)_J’f) ( | ow, ) )

i)
11_"- !’EJH!LI -

of, (fl (xf,wl(k:] ) , wikj)
ow,

d

dw,

-

L

- 2 fz(fl(xj,wlik:]),wf])—yf,

tensor form

d
dw,

. k) oLl
_ZZ( (f(.l w :]) w(f«::])_ ,)52 ol 2 i>"™
1| X W 2 Vi 5f1 P

§ k)
11"- i IEﬁI

So, the first layer passes to the second layer the information { 1 (xj,wl(k] )} .
A
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Under the hood of automatic differentiation

tuple<float,float> evaluateAndDerive(Expression Z, Variable V) {

if isVariable(Z)
if (Z = V) return {valueOf(Z), 1};
else return {valueOf(Z), 0};

else if (Z = A + B)

{a, a'} = evaluateAndDerive(A, V);
{b, b'} = evaluateAndDerive(B, V);
return {a + b, a' + b'};

else if (Z = A - B)
{a, a'} = evaluateAndDerive(A, V);
{b, b'} = evaluateAndDerive(B, V);
return {a - b, a' - b'};

else if (Z = A * B)
{a, a'} = evaluateAndDerive(A, V);
{b, b'} = evaluateAndDerive(B, V);

return {a * b, b * a' + a * b'};

(u,u'y + (v,v") = (u+ v, 4 +')
(u,v') — (v,0') = (u —v,u’ =)
(v
(v,

U ) = {(uw,u'v + uw')

() o) = (2, “”;“”) (v #0)

(u,u’) *

sin{u,u') = (sin(u), u cos(u)}
cos(u,u’) = (cos(u), —u' sin(u))
exp(u,u’) = (expu,u expu)
log(u,u') = (log(u), v /u) (u>0)
(u, u’)k = (uF,u'ku*t)  (u#£0)
[(u,u)| = (|ul,u'signw) (u#0)
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|f_1 =T
'fn-i-l. — "lIn{l - En)

f(-]'j} = 'f-l = 64:??[:1—_1'}(]__2332]2(1_81,_‘_ 83.’2}?‘

Manual >

Differentiation

f(x):
v=x
fori=1to 3
v=4*yx(1l - v)
return v

or, in closed-form,
f(x):

return 64%x* (1-x)*((1-2%x)"2)
#*(1-B*x+8%x*x) "2

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

Numerical
Differentiation

£7(x):
(v,dv) = (x,1)
fori=1to 3
(v,dv) = (d*y*(1-v), A*dv-8*y*dv)
return (v,dv)

f/(z) = 1282(1 — z)(—8 + 16x)(1 — 22)%(1 —
82 +82?) +64(1 —z)(1—22)*(1 -8z +82%)% —
64x(1 — 27)%(1 — 8z + 82%)? — 2562(1 —z)(1 —
2x)(1 — 8z + 8x2)2

Coding

£ (x):

return 128%x*(1 - x)*(-8 + 16%x)
#((1 - 2%x)"2)* (1 - 8*x + B*x*x)
+ 64%(1 - x)*((1 - 2*x)"2)*x( (1
— 8%x + B*xkx) "2) — (Bd*x*(1 -
2%x) " 2)* (1 - 8*%x + 8*kx*x) "2 -
256%x* (1 — x)*(1 - 2*x)* (1 - 8*x
+ Bkx*x) "2

£ (xy) = f'(x0)
Exact

£7(x):
h=0.000001
return (f(x+h) - f(x)) /h

£ (x0) ~ f'(x0)
Approximate
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Table 2: Forward mode AD example, with y = f(x, 29) = 111(:131)r—|—;1:1:132—sin(m2) evaluated

at (r1,79) = (2,5) and setting 27 = 1 to compute ;Tyl. The original forward
evaluation of the primals on the left is augmented by the tangent operations on
the right, where each line complements the original directly to its left.

Forward Primal Trace Forward Tangent (Derivative) Trace

V_1 = I1 =2 V-1 =T =1
Up = Ta =5 "{.fg = ﬂ‘fg =0
v =lnwv_y =1n2 o =v_1/v =1/2
Vg —=V_1XVg =2x5bH Vo =—=U_1XUp+TUgxvU_7 =1x54+0x2
va = sinvp —=sinb D3a = Up X COSUg =0 x cosb
V4 =11+ V2 = 0.693 4+ 10 V4 =11 4+ V9 —=051+5
Us = 1V4 — Us = 10.693 + 0.959 Vs = U4 — Vs =55—-0
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Gradient descent is a way to minimize an objective function .J(#) parameterized by a model’s
parameters f € R? by updating the parameters in the opposite direction of the gradient of the
objective function Vy.J(#) w.r.t. to the parameters. The learning rate 7 determines the size of the

steps we take to reach a (local) minimum. In other words, we follow the direction of the slope of the
surface created by the objective function downhill until we reach a valley

—
—
Do
(W)
e
o ¥

49



Vanilla gradient descent, aka-bateh-gradient-deseent, computes the gradient of the cost function w.r.t.
to the parameters ¢ for the entire training dataset:

0=60—n-VeJ(0) (1)

As we need to calculate the gradients for the whole dataset to perform just one update, bateh gradient
descent can be very slow and is intractable for datasets that do not fit in memory. Bateh gradient
descent also does not allow us to update our model online, i.e. with new examples on-the-fly.

In code, batch gradient descent looks something like this:

for i in range(nb_epochs):
params_grad = evaluate_gradient(loss_function, data, params)
params = params - learning_rate * params_grad
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Mini-batch gradient descent finally takes the best of both worlds and performs an update for every
mini-batch of n training examples:

H—=¢— n - VQJT(H.. I(i:i—l—n) : _y(i:i—i—n)) (3)

This way, it a) reduces the variance of the parameter updates. which can lead to more stable conver-
gence; and b) can make use of highly optimized matrix optimizations common to state-of-the-art
deep learning libraries that make computing the gradient w.r.t. a mini-batch very efficient. Common
mini-batch sizes range between 50 and 256, but can vary for different applications. Mini-batch
gradient descent is typically the algorithm of choice when training a neural network and the term
SGD usually is employed also when mini-batches are used. Note: In modifications of SGD in the

rest of this post, we leave out the parameters z(#*+7): (#1471 for simplicity.
In code, instead of iterating over examples, we now iterate over mini-batches of size 50:

for i in range (nb_epochs):
np.random.shuffle (data)
for batch in get_batches(data, batch_size=50):
params_grad = evaluate_gradient(loss_function, batch, params)
params = params - learning_rate * params_grad
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4.1 Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one
dimension than in another [20], which are common around local optima. In these scenarios, SGD
oscillates across the slopes of the ravine while only making hesitant progress along the bottom
towards the local optimum as in Figure|2a

> &

(a) SGD without momentum (b) SGD with momentum

Figure 2: Source: Genevieve B. Orr

Momentum [17] is a method that helps accelerate SGD in the relevant direction and dampens
oscillations as can be seen in Figure |2b] It does this by adding a fraction ~ of the update vector of the
past time step to the current update \fecto

vt = Yvi—1 +nVaeJ(0)

4
H:H—'E’t ()

The momentum term ~ is usually set to 0.9 or a similar value.
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Momentum - exponential averaging of past
gradients

Vi = WV TV 5 (H(t))

= (o 49,3 (6°)) 79,3 (6)

=y, +ynV ,J (H(t—l))+ v, (H(t))

:7nvt‘“+’7(7n_lvf9‘](9(t 1)+ +W9( )+v J(@“))



4.3 Adagrad

Adagrad [8] is an algorithm for gradient-based optimization that does just this: It adapts the learning
rate to the parameters, performing larger updates for infrequent and smaller updates for frequent
parameters. For this reason, it is well-suited for dealing with sparse data. Dean et al. have found
that Adagrad greatly improved the robustness of SGD and used it for training large-scale neural nets
at Google, which — among other things — learned to recognize cats in Youtube video Moreover,
Pennington et al. used Adagrad to train GloVe word embeddings, as infrequent words require
much larger updates than frequent ones.

Previously, we performed an update for all parameters ¢ at once as every parameter ¢; used the same
learning rate 7. As Adagrad uses a different learning rate for every parameter ¢; at every time step ¢,
we first show Adagrad’s per-parameter update, which we then vectorize. For brevity, we set g; ; to be
the gradient of the objective function w.r.t. to the parameter ¢, at time step ¢:

Gti = Vo, J(0:) (6)

The SGD update for every parameter #; at each time step ¢ then becomes:

Otv15="0t:i — 1 gt (7)
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In its update rule, Adagrad modifies the general learning rate 7) at each time step ¢ for every parameter
0; based on the past gradients that have been computed for ¢;:

Ui

8
mgh ()

Gy € R¥*4 here is a diagonal matrix where each diagonal element 7, 7 is the sum of the squares of the
gradients w.r.t. #; up to time step while € is a smoothing term that avoids division by zero (usually

on the order of 1e — 8). Interestingly, without the square root operation, the algorithm performs much
WOTSE.

Ot+1,: = Ori —

As G contains the sum of the squares of the past gradients w.r.t. to all parameters ¢ along its
diagonal, we can now vectorize our implementation by performing an element-wise matrix-vector
multiplication & between G; and g;:

T .
G ) g;.
A/ C:rt + c

One of Adagrad’s main benefits is that it eliminates the need to manually tune the learning rate. Most
implementations use a default value of 0.01 and leave it at that.

9)

Ory1 =0 —

Adagrad’s main weakness is its accumulation of the squared gradients in the denominator: Since
every added term is positive, the accumulated sum keeps growing during training. This in turn causes
the learning rate to shrink and eventually become infinitesimally small, at which point the algorithm

is no longer able to acquire additional knowledge. The following algorithms aim to resolve this flaw.
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4.6 Adam

Adaptive Moment Estimation (Adam) [10] is another method that computes adaptive learning rates
for each parameter. In addition to storing an exponentially decaying average of past squared gradients
vt like Adadelta and RMSprop, Adam also keeps an exponentially decaying average of past gradients
my, similar to momentum:

my = Bymy_1 + (1 — 1) g

(19)
; Q2,2

Uy = I_:gg'l-‘g_l + (1 — ﬁg)gt
my; and v; are estimates of the first moment (the mean) and the second moment (the uncentered
variance) of the gradients respectively, hence the name of the method. As m; and v; are initialized as
vectors of 0’s, the authors of Adam observe that they are biased towards zero, especially during the
initial time steps, and especially when the decay rates are small (i.e. 31 and 35 are close to 1).

They counteract these biases by computing bias-corrected first and second moment estimates:

iy = —
t = _
1— 3
. 20
N R
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They then use these to update the parameters just as we have seen in Adadelta and RMSprop, which
yields the Adam update rule:

. T )
Orr1 = 0y — ﬁmt (21)
't

The authors propose default values of 0.9 for 3., 0.999 for 35, and 10~2 for e. They show empiri-

cally that Adam works well in practice and compares favorably to other adaptive learning-method

algorithms.
1 MNIST Multilayer Neural Network 4+ dropout

AdaGrad
RMSProp
SGDMNesterov
AdaDelta
Adam

training cost

10

i 1 1
0 50 100 150 200
iterations over entire dataset
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